CS61A, Fall 2000
 Midterm \#1
 Professor Brian Harvey

Problem \#1 (5 points):

What will Scheme print in response to the following expressions? If an expression produces an error message, you may just say "error"; you don't have to provide the exact text of the message. If the value of an expression is a procedure, just say "procedure"; you don't have to show the form in which Scheme prints procedures.
(let ((a 3) (b 4))
(lambda () (+ a b)))
(let ((a 3) (b 4))
((lambda () (* a b))))
(every - (filter number? ‘(the 1 after 909))) ; EVERY from homework 2

For the following, also draw a box and pointer diagram of the value produced by each expression.
(cons '(ab) (list '(c d) 'e))
(cddar $\left.{ }^{\prime}((\mathrm{abc})(\mathrm{def})(\mathrm{ghi}))\right)$

Problem \#2 (2 points)
(a) Indicate the order of growth in time of foo below:

```
(define (foo n)
    (if (< n 2)
        1
        (+ (baz (- n 1))
            (baz (- n 2))) ))
```

(define (baz n)
(+ n (-n 1)))
_Theta(1) \qquad Theta(n) \qquad Theta(n^2) \qquad Theta($2^{\wedge} \mathrm{n}$)
(b) Indicate the order of growth in time of garply below:
(define $($ garply n$)$
\quad (if $(=\mathrm{n} 0)$
$\quad 0$
$\quad(+($ factorial n$)($ garply $(-\mathrm{n} 1)))))$
(define (factorial n)
(if (= n 0)
1
(* $\mathrm{n}($ factorial (- n 1)))))
\ldots Theta(1) __Theta(n) __Theta(n^2) __Theta($\left.2^{\wedge} n\right)$

Problem \#3 (2 points)

If an expression produces an error, just say "error": if it returns a procedure, just say "procedure." Given the following definitions:
(define (mountain x) 'done)
(define (dew) (dew))
(a) What will be the result of the expression (mountain (dew))
in normal order? \qquad in applicative order? \qquad
(b) What will be the result of the expression (mountain dew)
in normal order? \qquad in applicative order?

Problem \#4 (2 points)

```
(define (even? n)
    (cond ((= n 0) #t)
        ((= n 1) #f)
        (else (if (even ? (- n 2))
    #t
    #f))))
```

Does this procedure generate an iterative process or a recursive process?
If iterative, explain why in one sentence. If recursive, rewrite it, changing as little as possible, to make it generate an iterative process.

Problem \#5 (4 points)

This question concerns the twenty-one game used in the first programming project.

(Assume the version without jokers.)

(a) Write a procedure random-strategy that takes a list of strategies as its argument, and returns a strategy that randomly uses one of the strategies from the list each time it's called. You may use this helper procedure:
(define (pick seq)
(list-ref seq (random (length seq))))
(b) Using the procedures every (from homework 2) and/or filter (from lecture), write a strategy called lovelorn that asks for an additional card if and only if there are no hearts in the hand.

Problem \#6 (4 points)

The following partly-written procedure takes a list of sentences as its argument. It should return a sentence containing the first word of the first sentence, the second word of the second sentence, and so on. (Assume the sentences are long enough; don't add error checks.)
> (diagonal '((she loves you) (tell me why) (i want to hold your hand)))
(she me to)
Fill in the blanks to complete the definitions correctly. Respect the data abstraction: use sentence procedures for sentences, list procedures for lists.
(define (diagonal lstsents)
(if \qquad lstsents)
'()

(\qquad (\qquad lstsents))
(diagonal (chop (\qquad lstsents))))))
(define (chop 1stsents) ; Remove first word from each sentence
(if \qquad lstsents)
'()

Posted by HKN (Electrical Engineering and Computer Science Honor Society) University of California at Berkeley
If you have any questions about these online exams please contact mailto:examfile@hkn.eecs.berkeley.edu

