
CS61B Spring 2001 Midterm #3

CS61B Spring 2001 Midterm #3
Professor Mike Clancy

Read and fill in this page now.
Do NOT turn the page until you are told to do so.

Your name:

Your login name:

Your lab section day and time:

Your lab t.a.:

Name of the person sitting to your left:

Name of the person sitting to your right:

Problem 0 Total: /20

Problem 1

Problem 2 Problem 4

Problem 3

This is an open-book test. You have approximately fifty minutes to complete it. You may consult
any books, notes, or other paper-based inanimate objects available to you. To avoid confusion,
read the problems carefully. If you find it hard to understand a problem, ask us to explain it. If
you have a question during the test, please come to the front or the side of the room to ask it.

Some students are taking this exam late. Please do not talk to them, mail them information, or
post anything about the exam to news groups until after Wednesday.

This exam comprises 10% of the points on which your final grade will be based. Partial credit
may be given for wrong answers. Your exam should contain five problems (numbered 0 through
4) on twelve pages. Please write your answers in the spaces provided in the test; in particular, we
will not grade anything on the back of an exam page unless we are clearly told on the front of the
page to look there.

Relax--this exam is not worth having heart failure about.

file:///C|/Documents%20and%20Settings/Jason%20Raft...20Spring%202001%20-%20Clancy%20-%20Midterm%203.htm (1 of 10)1/27/2007 5:40:36 PM

CS61B Spring 2001 Midterm #3

Problem 0 (1 point, 1 minute)

Put your login name on each page. Also make sure you have provided the information requested
on the first page.

Problem 1 (5 points, 15 minutes)

Consider the code given below, which applies the heapsort algorithm to sort the values in the
argument array in place.

/*
* REQUIRES: values is an initialized array;
* MODIFIES: values.
* EFFECTS: Sorts the elements of values from smallest to largest.
*/

public static void heapSort (int [] values) {
if (values.length <= 1) {
return;
}
changeToMaxHeap (values);
for (int k=values.length-1; k>0; k--) {
int temp = values[k];
values[k] = values[0];
values[0] = temp;
reheapifyDown (values, 0, k);
}
}

/*
* REQUIRES: values is an initialized array;
* 0 ≤ heapSize ≤ values.length; 0 ≤ index < heapSize;
* in the "almost-heap" rooted at values[index],
* only values[index] may violate the heap property.
* MODIFIES: values.
* EFFECTS: Moves values[index] down in its subheap if necessary
* so that all nodes in the heap rooted at values[index] satisfy
* the heap property.
*/
private static void reheapifyDown (int [] values, int index,
int heapSize) ...

/*
* REQUIRES: values is an initialized array;
* MODIFIES: values.
* EFFECTS: Rearranges the elements of values so that values represents a max heap.
*/
private static void changeToMaxHeap (int [] values) ...

Part a

file:///C|/Documents%20and%20Settings/Jason%20Raft...20Spring%202001%20-%20Clancy%20-%20Midterm%203.htm (2 of 10)1/27/2007 5:40:36 PM

CS61B Spring 2001 Midterm #3

After some number of calls to reheapifyDown , the values array contains the elements
6 5 4 3 1 2 7

How many iterations of the loop have been completed? Briefly justify your answer, explaining
why you know it's not more iterations and why you know it's not fewer.

Part b

Fill in the boxes below to show the array that results after executing the next iteration of the loop.
Also show how you derived your answer.

Explanation:

Problem 2 (3 points, 10 minutes)

Consider the following arrangements of creatures (represented by *'s) in an ocean.

ocean A ocean B

Suppose that each of the above oceans were represented as a QuadTree whose root represents the
quadrant going from (0,0) to (7,7) . (The description of QuadTree s from project 2 appears at the
end of this exam.) Call these trees treeA (representing ocean A) and treeB (representing ocean B).

Part a

The depth is the maximum number of nodes on a path from the root to a leaf. The depth of an
empty tree is 0, and the depth of a tree whose only node is a leaf is 1.

Circle the correct answer below.

treeA is deeper than treeB

1. treeA and treeB are equally deep

file:///C|/Documents%20and%20Settings/Jason%20Raft...20Spring%202001%20-%20Clancy%20-%20Midterm%203.htm (3 of 10)1/27/2007 5:40:36 PM

CS61B Spring 2001 Midterm #3

2. treeB is deeper than treeA

Part b

For each of the above arrangements, give an (x,y) position somewhere in the quadrant going from
(0,0) to (7,7) at which adding a creature would increase the depth of the tree. The answer may be
"none" if no single call to addCreature would increase the depth of the tree.

Position at which adding a creature would increase the depth of treeA :

Position at which adding a creature would increase the depth of treeB :

Problem 3 (3 points, 8 minutes)

Consider the following algorithm to sort an array of objects named values . We'll call it
exam3sort .

BST tree = new BST ();
for (int k=0; k<values.length; k++) {
tree.insert (values[k]);
}
Enumeration enum = tree.inorder ();
for (int k=0; k<values.length; k++) {
values[k] = enum.nextElement ();
}

Assume that the insert method uses the standard insertion algorithm for binary search trees and
makes no effort to keep the tree balanced, and that the inorder method (from homework
assignment 5) returns an enumeration of the tree elements in inorder.

Indicate which of the following algorithms performs most like exam3sort , when performance is
measured as in lab assignment 11 on elements initially in random order, in increasing order, and
in decreasing order.

Quicksort (choosing the first item as the pivot, unlike in lab 11)

1. insertion sort (as in lab 11)

2. selection sort (as in lab 11)

3. merge sort (as in lab 11)

Briefly explain the similarities between your choice and exam3sort .

This page is intentionally left blank.

file:///C|/Documents%20and%20Settings/Jason%20Raft...20Spring%202001%20-%20Clancy%20-%20Midterm%203.htm (4 of 10)1/27/2007 5:40:36 PM

CS61B Spring 2001 Midterm #3

Problem 4 (8 points, 16 minutes)

Consider an Exam3Structure class representing a binary tree whose framework appears below.

public class Exam3Structure {

// Exam3Structure methods would go here.

private TreeNode myRoot;

private class TreeNode {

/*
* INVARIANT: myItem values are always non-null .
*/

public TreeNode myLeft;
public TreeNode myRight;
public Object myItem;

/*
* REQUIRES: item != null.
* EFFECTS: Initializes a TreeNode object with the given values .
*/

public TreeNode (Object item, TreeNode left, TreeNode right) {
myItem = item;
myLeft = left;
myRight = right;
}

/*
* REQUIRES: The data structure rooted at this isn't circular.
* EFFECTS: Returns true when the data structure rooted at this
* is structurally equivalent to the data structure rooted at x.
*/

public boolean equals (Object x) {
return equalsHelper (this, (TreeNode) x);
}

private static boolean equalsHelper (TreeNode t1, TreeNode t2) {
if (t1 == null) {
return t2 == null;
} else if (t2 == null || !t1.myItem.equals(t2.myItem)) {
return false;
} else {
return equalsHelper (t1.myLeft, t2.myLeft)
&& equalsHelper (t1.myRight, t2.myRight);
}
}

/*
* EFFECTS: Return a hash value for the structure rooted at this.
*/

file:///C|/Documents%20and%20Settings/Jason%20Raft...20Spring%202001%20-%20Clancy%20-%20Midterm%203.htm (5 of 10)1/27/2007 5:40:36 PM

CS61B Spring 2001 Midterm #3

public int hashCode () ...
}
}

Part a

Complete an Exam3Structure method named removeCopies that optimizes the number of
TreeNode s required to store the tree values in the following way. For any two TreeNode s t1 and
t2 in the tree (representing subtrees of the Exam3Structure object) for which t1.equals(t2) , one of
them should be replaced by a reference to the other. For example, removeCopies might transform
the tree on the left in the diagram below into the structure on the right.
before call to removeCopies after call to removeCopies

Fill in the code in the framework on the next page. Your removeCopies method must take time,
on the average, proportional to the number of nodes in the tree, assuming that hash table
operations take constant time on the average. Assume that a hashCode method has been defined
for TreeNode objects, and that no changes will be made to the Exam3Structure object after the
call to removeCopies .

You need no more than four lines of code (including the return statements) to answer this
question.

Part a, continued

Fill in your answer to part a below. The Hashtable class used below is java.util.Hashtable . Its
relevant method signatures appear at the end of this exam.

import java.util.*;

public class Exam3Structure {

// Other Exam3Structure methods and the TreeNode declaration go here.

private TreeNode myRoot;

public void removeCopies () {
Hashtable table = new Hashtable (mySize);

file:///C|/Documents%20and%20Settings/Jason%20Raft...20Spring%202001%20-%20Clancy%20-%20Midterm%203.htm (6 of 10)1/27/2007 5:40:36 PM

CS61B Spring 2001 Midterm #3

if (myRoot != null) {
myRoot = helper (myRoot, table);
}
}

private TreeNode helper (TreeNode node, Hashtable table) {
if (node.myLeft != null) {
node.myLeft = helper2 (node.myLeft, table);
}
if (node.myRight != null) {
node.myRight = helper2 (node.myRight, table);
}
}

private TreeNode helper2 (TreeNode node, Hashtable table) {
if (table.containsKey (node)) {
return ____________________________________ ;
} else {
return ____________________________________ ;
}
}
}

Part b

Choose the best among the following implementations of TreeNode.hashCode () . Also justify
your choice, both by giving one or more advantages for the implementation you choose and by
listing at least one disadvantage for each of the others.

Implementation A

public int hashCode () {
// Returns the default hash value, .
// computed from the object's reference.
return super.hashCode ();
}

Implementation B

public int hashCode () {
int returnValue = myItem.hashCode();
if (myLeft != null) {
returnValue += myLeft.hashCode();
}
if (myRight != null) {
returnValue += myRight.hashCode();
}
return returnValue;
}

file:///C|/Documents%20and%20Settings/Jason%20Raft...20Spring%202001%20-%20Clancy%20-%20Midterm%203.htm (7 of 10)1/27/2007 5:40:36 PM

CS61B Spring 2001 Midterm #3

Implementation C

public int hashCode () {
int returnValue = myItem.hashCode();
if (myLeft != null) {
returnValue +=
myLeft.myItem.hashCode();
}
if (myRight != null) {
returnValue +=
myRight.myItem.hashCode();
}
return returnValue;
}

Implementation D

public int hashCode () {
int returnValue = super.hashCode ();
if (myLeft != null) {
returnValue += myLeft.hashCode();
}
if (myRight != null) {
returnValue += myRight.hashCode();
}
return returnValue;
}

Implementation
Advantage or
disadvantage

A

B

C

D

Best implementation: _____

Description of QuadTree from project 2

[A] QuadTree representation ... recursively divides the domain into quadrants.

Here is a picture of the ocean divided into quadrants with some positions shown:

0,15	15,15

file:///C|/Documents%20and%20Settings/Jason%20Raft...20Spring%202001%20-%20Clancy%20-%20Midterm%203.htm (8 of 10)1/27/2007 5:40:36 PM

CS61B Spring 2001 Midterm #3

0,8	8,8

7,7		15,7
	11,4	

	11,3	
0,0	8,0	15,0

The lower right quadrant has been subdivided. The quad tree representation for this data structure
would have three levels:

root (0,0 to 15,15)

/ / \ \
(0,0 to 7,7) (0,8 to 0,15) (8,0 to 15,7) (8,8 to 15,15)
/ / \ \
/ / \ \
(8,0 to 11,3) (...) (...) (...)

The ...'s represent the numbers of the other three squares in the subdivided lower right quadrant.
The order of the child nodes is not important to us, although you should pick some order so that
you can easily determine which child to look in for a given position.

There are two kinds of nodes in a quad tree:

● a leaf node holds exactly one Creature , where the Creature's (x,y) position must be in
the range of that quadrant.

● an internal node holds no creatures, but has between 1 and 4 children.

The quadrants of child nodes should always be contained in the quadrant of the parent node, and
the child nodes should cover 1/4 of the area of the parent. For this reason, you should use powers
of two for the dimension of your quadrants, so that you can easily subdivide them.

List of java.util.Hashtable methods

public Hashtable (int initialCapacity, float loadFactor);

public Hashtable (int initialCapacity);

public Hashtable ();

public Object clone ();

file:///C|/Documents%20and%20Settings/Jason%20Raft...20Spring%202001%20-%20Clancy%20-%20Midterm%203.htm (9 of 10)1/27/2007 5:40:36 PM

CS61B Spring 2001 Midterm #3

public boolean contains (Object value);

public boolean containsKey (Object key);

public Enumeration elements ();

public Object get (Object key);

public boolean isEmpty ();

public Enumeration keys ();

public Object put (Object key, Object value);

public Object remove (Object key);

public int size ();

public String toString ();

List of java.util.Stack methods

public Stack ();

public boolean empty ();

public Object peek (); // returns top of the stack without popping it

public Object pop ();

public Object push (Object item); // returns the pushed item

Posted by HKN (Electrical Engineering and Computer Science Honor Society)
University of California at Berkeley

If you have any questions about these online exams
please contactmailto:examfile@hkn.eecs.berkeley.edu

file:///C|/Documents%20and%20Settings/Jason%20Raf...0Spring%202001%20-%20Clancy%20-%20Midterm%203.htm (10 of 10)1/27/2007 5:40:36 PM

mailto:examfile@hkn.eecs.berkeley.edu

	Local Disk
	CS61B Spring 2001 Midterm #3

