Math 104: Introduction to Analysis Midterm March 20th, 2002 Weingart

Name:		
Signature:		

There are 9 problems on this midterm worth 100 points of 400 for the class in total. The first 5 problems are each worth 8 points for the correct answer, whereas the last 4 problems are more difficult and worth 15 points each. You must show your work to get any credit for the last 4 problems. Successful midterm!

1	1	2	3	4	5	- 6	7	8	9	Total
										•
					:					

Problem 1: (8 points)

Recall that 0 is called a limiting point of a sequence $(s_n)_{n\geq 1}$ if for every $\varepsilon > 0$ there are infinitely many $n \in N$ with $|s_n| < \varepsilon$. If however 0 is NOT a limiting point for a sequence $(s_n)_{n\geq 1}$, what do you conclude?

П	There is some $\varepsilon >$	0 such that	$ s_n > \varepsilon$ for	or all but fir	nitely many	$n \in \mathbb{N}$.
	THOIC IS SOURCE /	O prich three	$ o_n \leq c$	I COLL DOLD III	interj manj	

- $\Box \qquad \text{There is some } \varepsilon > 0 \text{ such that } |s_n| \ge \varepsilon \text{ for infinitely many } n \in \mathbb{N}.$
- $\Box \qquad \text{For all } \varepsilon > 0 \text{ there are infinitely many } n \in \mathbb{N} \text{ with } |s_n| \geq \varepsilon.$

Problem 2: (8 points)

Every rational number can be written in lowest possible terms $\frac{p}{q}$, so that p and q have no common divisor and q > 0. Consider the function $f: \mathbb{Q} \cap [0,1] \longrightarrow \mathbb{R}$ defined on the rational numbers $r \in [0,1]$ by writing $r = \frac{p}{q}$ in lowest possible terms and setting $f(r) := \frac{1}{q}$.

- There are different continuous functions $g: [0,1] \longrightarrow \mathbb{R}$ extending f such that g(r) = f(r) for all rational numbers r in [0,1].
- There is exactly one continuous function $g:[0,1] \longrightarrow \mathbb{R}$ extending f such that g(r) = f(r) for all rational numbers r in [0,1].
- There is no continuous function $g:[0,1] \longrightarrow \mathbb{R}$ extending f such that g(r) = f(r) for all rational numbers r in [0,1].

Problem 3: (8 points)

Consider an interval $I \subset \mathbb{R}$ and some continuous function $f: I \longrightarrow \mathbb{R}$ defined on I. Which of the following statements is true?

- If I = [a, b] is a closed interval then $f(I) \subset \mathbb{R}$ is a closed interval for every continuous function f defined on I.
- If $I = [a, \infty)$ is a closed interval then $f(I) \subset \mathbb{R}$ is a closed interval for every continuous function f defined on I.
- If I = (a,b) is an open interval then $f(I) \subset \mathbb{R}$ is an open interval for every continuous function f defined on I.

Problem 4: (8 points)

This impressive list of names and well-sounding statements connected with them contains one flawed reformulation, namely?

- \square By the Theorem of Heine–Borel every closed subset A of $\mathbb R$ is compact or unbounded.
- By Banach's Fixed Point Theorem every contraction $f:S\longrightarrow S$ of a Cauchy-complete metric space S has a unique fixed point.
- By the Theorem of Bolzano-Weierstraß every bounded sequence $(s_n)_{n\geq 1}$ of real numbers has a convergent subsequence.

Problem 5: (8 points)

Calculating the radius of convergence of a power series can be tricky. Unluckily I was careless and made an error in my calculations, please find it:

- \square The radius of convergence of the power series $\sum_{m=0}^{\infty} (m+1) x^m$ is R = 1.
- \square The radius of convergence of the power series $\sum_{m=0}^{\infty} (\frac{1}{4})^m x^{2m}$ is R=2.
- The radius of convergence of the power series $\sum_{m=0}^{\infty} {2m \choose m} x^m$ is R=4.

Problem 6: (15 points)

Formulate the completeness axiom of the real numbers and write down the definition of the limit of a convergent sequence of real numbers.

Problem 7: (15 points)

Show that the two functions $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ and $g: \mathbb{R}^2 \longrightarrow \mathbb{R}$ defined by f(x,y) := x and g(x,y) := y are continuous. Conclude that the function f^2g defined by $(f^2g)(x,y) := x^2y$ is continuous as well.

Problem 8: (15 points)

Consider a closed subset $A \subset S$ of a metric space S, in other words its complement $S \setminus A$ is open. Prove explicitly that every convergent sequence $(a_n)_{n\geq 1}$ of elements $a_n \in A$ converges to a limit $\lim_{n\to\infty} a_n$ in A.

Problem 9: (15 points)

Consider a closed interval $[0,1] \subset \mathbb{R}$ and the set of all continuous functions on [0,1]:

$$C^0(\,[0,1]\,) \ := \ \left\{\,f:\, [0,1] \longrightarrow \mathbb{R} \mid f \text{ is continuous}\,\right\}.$$

Verify the axioms of a metric space for the following distance function on $C^0([0,1])$:

$$\operatorname{dist}(f, g) := \sup \{ |f(x) - g(x)| | x \in [0, 1] \} \quad f, g \in C^{0}([0, 1]).$$

Note that for fixed $f, g \in C^0([0,1]$ the supremum in the definition of dist(f,g) is always a real number and never $+\infty$. Why?