ME 132, Fall 2003, Quiz 2

#1	# 2	# 3	# 4	TOTAL
6	20	0	15	50

Name:

NOTE: Any unmarked summing junctions are positively signed (+).

1. The input u, and output y, of a single-input, single-output system are related by

$$y^{[3]}(t) + 6y^{[2]}(t) + 2y^{[1]}(t) + 3y(t) = 2u^{[2]}(t) - 5u^{[1]}(t) - 5u(t)$$

(a) Find the transfer function from U to Y

(b) Show that this is a stable system.

(c) If $u(t) \equiv 2$ for all $t \ge 0$, what is the limiting value of y, namely $\lim_{t\to\infty} ?$

(d) Suppose the input is sinusoidal, $u(t) = \sin(100t)$. In the steady state, what is the approximate amplitude of the sinusoidal output y?

2. Two masses are connected by a linear, massless spring. An external force f is applied to Mass #1. Suppose that v_1 is the velocity of m_1 , v_2 is the velocity of m_2 (both measured relative to the same inertial frame).

Since the spring is massless, the forces at each end must balance, and are equal to $k\Delta$, where Δ is the stretch in the spring (from its unstretched length L). This is shown above, right.

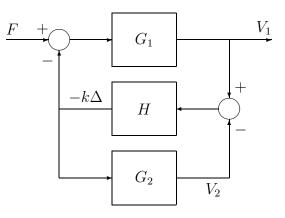
(a) Interpret the meaning of each of the equations below. Draw a Free-body diagram, or other appropriate picture to assist in your explanation.

i.
$$f(t) + k\Delta(t) = m_1 \dot{v}_1(t)$$

ii. $-k\Delta(t) = m_2 \dot{v}_2(t)$

iii.
$$\dot{\Delta}(t) = v_2(t) - v_1(t)$$

(b) Find transfer functions G_1 , G_2 and H so that the block diagram below represents the relationships you wrote on the previous page. Note that a few internal signals $(-k\Delta \text{ and } v_2)$ are marked. These are to be used to determine G_1 , G_2 and H.

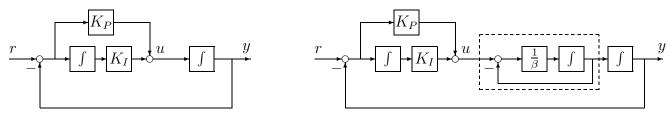


(c) Find the transfer function from F to V_1 .

(d) Suppose that the goal is to control V_1 . Relabel the velocity as Y, so $Y = V_1$. Consider a simple proportional control strategy, $F = K_P(R - Y)$, where R is a "desired velocity" reference signal, and K_P is a constant gain. Draw a simple block-diagram, and derive the closed-loop transfer function from $R \to Y$.

(e) What are the conditions on K_P for closed-loop stability?

3. Shown below are two systems. The system on the left is the **nominal system**, while the system on the right represents a deviation from the nominal (the insertion of the dashed box) and is called the **perturbed system**.



Based on the values of K_P an K_I , and some analysis, you should have a general idea of how the nominal system behaves (eg., the effect of r on u and y). Consider 3 different possibilities (listed below) regarding the relationship between the nominal and perturbed systems:

- (a) The perturbed system behaves pretty much the same as the nominal system.
- (b) The perturbed system behaves quite differently from the nominal system, <u>but is still stable</u>.
- (c) The perturbed system is <u>unstable</u>.

For each row in the table below, which description from above applies? Write \mathbf{a} , \mathbf{b} , or \mathbf{c} in each box. Show work below.

K_P	K_I	β	Your Answer
2.8	4	0.02	
1.4	1	1	
14	100	0.2	
70	2500	0.02	

4. A process, with input v and output y is governed by

$$\dot{y}(t) - 2y(t) = v(t)$$

(a) What is the transfer function from V to Y?

(b) Suppose y(0) = 1, and $v(t) \equiv 0$ for all $t \ge 0$. What is the solution y(t) for $t \ge 0$. Is the process stable?

(c) Suppose that the input v is the sum of a control input u and a disturbance input d, so v(t) = u(t) + d(t). Consider a PI control strategy, $u(t) = K_P[r(t) - y(t)] + K_I z(t), \dot{z}(t) = r(t) - y(t)$. Draw a block diagram of the closed-loop system using transfer function representations for the process and the controller. Include the external inputs r and d, and label the signals u and y.

(d) In the closed-loop, what are the transfer functions from R to Y and from D to Y.

(e) In the closed-loop, what are the transfer functions from R to U and from D to U.

(f) For what values of K_P and K_I is the closed-loop system stable?

(g) Choose K_P and K_I so that the closed-loop characteristic equation has roots with $\xi = 0.707 (= \frac{1}{\sqrt{2}})$ and $\omega_n = 2$.