Math 123, Section 1: Fall 1994, J. Strain.

Final Exam, 8 December 1994.

Name:

d > 0

Problem 1. (6 points)

- (a) Suppose $\alpha 0$ and let f be a continuous function on R with $|f(y)| \leq |y|^2$. Find $\epsilon 0$ such that every solution y of $y' = -\alpha y + f(y)$ with $|y(0)| < \epsilon$ exists for all $x \geq 0$.
- (b) Show that solutions of $y' = -y + y^2$ may not exist for all $x \ge 0$ if y(0) is too large.

Problem 2. (4 points)

Suppose A is an $n \times n$ matrix whose eigenvalues λ_j all have nonzero real parts. Show that every solution y of y' = Ay satisfies either $||y(x)|| \to \infty$ or $||y(x)|| \to 0$ as $x \to +\infty$.

Problem 3. (4 points)

- (a) Suppose $f \in C^0(\mathbb{R}^n; \mathbb{R}^n)$ satisfies f(0) = 0 and $||f(x) f(y)|| \le ||x y||$. Show that the solution of y' = f(y) satisfies $||y(x)|| \le e^x ||y_0||$ and exists for all $x \in \mathbb{R}$.
- (b) Let

$$y_1(x) = \cos(\sqrt{100-x})$$

$$y_2(x) = \sin(\sqrt{100 - x}).$$

Can $y = (y_1, y_2)$ solve a 2×2 autonomous system y' = f(y) with $f \in C^1(\mathbb{R}^2; \mathbb{R}^2)$? If so, find such a system; otherwise, explain why not.

Problem 4. (4 points)

(a) Suppose $f \in C^1(R)$ and

$$y_1'=f(y_2)$$

$$y_2'=f(y_3)$$

$$y_3'=f(y_1)$$

with $y_1(0) = y_2(0) = y_3(0)$. Show that $y_1 = y_2 = y_3$ for all x.

(b) Show that

$$y' = -2y$$

with y(0) = 0 has only the trivial solution.

Problem 5. (6 points)

Let

$$P = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}.$$

Find

- (a) $Y(x) = e^{Px}$
- (b) the solution of y' = Py with $y(0) = (1,0)^T$
- (c) the solution of $y' = Py + (1,0)^T$ with

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} y(0) + \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} y(1) = 0.$$

Problem 6. (6 points)

Suppose f is a C^1 function on $I \times R$ where I = [0,1] and $|f| + |f_x| + |f_y| \le M$. We say that a function y_{ϵ} which is continuous and piecewise- C^1 on I is an ϵ -solution of

$$y' = f(x, y), \qquad y(0) = 0$$

if $y_{\epsilon}(0) = 0$ and

$$|y'_{\epsilon}(x) - f(x, y_{\epsilon}(x))| \le \epsilon$$

at any $x \in I$ where y'_{ϵ} exists.

- (a) Suppose for each $\epsilon 0$ there is an ϵ -solution y_{ϵ} which is C^1 on I. Show that there is a sequence $\epsilon_n \to 0$ and a continuous function y such that $y_{\epsilon_n} \to y$ uniformly on I.
- (b) Show that if y is the limit from (a) then y(0) = 0 and y is a solution of y' = f(x, y).
- (c) Show that

$$y^{h}(x) = 0 \qquad 0 \le x \le h$$

$$y^{h}(x) = \int_{0}^{x-h} f(s, y^{h}(s)) ds \qquad h \le x \le 1$$

defines an ϵ -solution for any $(\epsilon 0)$ depending on h).