Math 54, Section 1: Differential equations and linear algebra.

Fall 1994, H.W. Lenstra, Jr.

Midterm, September 26, 1994.

Name:

Section number:

T.A.:

List of discussion sections:

- 101 S. Simic
- 102 A. Gottlieb
- 103 G. Anderson
- 104 G. Anderson
- 105 S. Simic
- 106 T. Walker
- 107 A. Gottlieb
- 108 L. Pyle
- 109 L. Pyle

1	
2	
3	
4	
Total	

Problem 1. (25 points)

Let the matrix A be defined by

$$A = \begin{pmatrix} 7 & -3 & 0 & 0 & 0 \\ 0 & 1 & -3 & 0 & 0 \\ 0 & 0 & 7 & -3 & 0 \\ 0 & 0 & 0 & 1 & -3 \\ -3 & 0 & 0 & 0 & 7 \end{pmatrix}.$$

- (a) Calculate the determinant of A.
- (b) Calculate the determinant of A^3 without computing A^3 .

Problem 2. (25 points)

Consider the system of linear equations

$$x + 2y + az = 0,$$

$$-x + z = 0,$$

$$ax - y + z = 0.$$

Find the values of a for which the system has a unique solution; infinitely many solutions; no solution.

Problem 3. (25 points)

Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear operator defined by T(x,y) = (7x,4x+3y). Determine the eigenvalues of T, and find for every eigenvalue an eigenvector.

Problem 4. (25 points)

- (a) Let A and B be square matrices. Suppose that A is invertible and that BAB = A. Show that B is invertible.
- (b) Let $C = (c_{ij})$ be a 2×2 matrix satisfying

$$c_{11} = \frac{4}{5}, \quad c_{21} = \frac{3}{5}, \quad C^T C = I, \quad \det C > 0.$$

Determine C.