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Math 55: Kinal Exam, Dec 18, 1990

Problem 1: Show all steps in the following calculations.

(a) Use the Enclidean algorithm to compute ged(21,13). , , ;

(b) Use your work from (a) to find integers s and { such ‘H’ICLJF _ cd (21;‘3) = 5%+ t' (3,
(c) Use the procedure of the Chinese Remainder Theorem to find an integer © with0 <z < 21-13 =

273 such that
zgmod21 =5

zmod 13 =3

Solution 1: (a) The Euclidean algorithm goes as follows:

z=21 y=13
r=21mod13 =8 =13 y=2=8
r=25 z=28 y=35
r=3 z=25 y=3
r=2 z=3 y=2
r=1 T =2 y=
r=0 z=1=gcd(21,13) y=0

(b) Working backwards, we find

1 = 3—-2=3-(5-3)
= —-1:-542.3=~1-5+2-(8-5)
= 2-8-3-5=2-8—3-(13 -8}
= —3.1345-8=-3-13+5-(21 -13)
5.21—8-13.

Thus s =5 and t = —8.
(c) Since M = 21 -13 = 273 and the moduli 13 and 21 are relatively prime, a unique solution to

the problem exists by the Chinese Remainder Theorem. To find it, we put M; = 13, M, =21 and
seek z in the form z = £, M; + 22M,. Then the equations separate and we have to solve

1 M; mod 21 = 13z mod 21 = 5
and
$2M2 mod 13 = 21:1!2 mod 13 = 3.

Thus we can solve these two equations independently by finding the inverses of 13 mod 21 and
21 mod 13 and multiplying. From (b), we have 1 = 5-21 — 8- 13, s0 521 mod 13 = 1 and
—8-13 mod 21 = 13 - 13 mod 21 = 1. Multiplying through, we find

13 -13z; mod 21 = z; mod 21 = 13 -5 mod 21 = 2

and
5.21z, mod 13 = £ mod 13 = 5-3 mod 13 = 2.

Thus 1 = 22 = 2 and z = 2- 13+ 2- 21 mod 273 = 68. Checking, we note that z mod 21 = 5 and
z mod 13 = 3.
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Problem 2: A computer network consists of n > 10 computers, each one directly connected to 2

or more of the others.
{a) Prove or give a counterexample: There are at least two computers in the network that are

directly connected to the same number of other computers.

(b) Suppose we want to study the network traffic level by sending a packet from computer to
computer through the network so that the packet passes through each connection exactly once
(i any direction) and returns to its starting point. State a simple condition on the number of
connections to each computer which is necessary and sufficient for this test to be possible.

Solution 2: (a) For j = 1,...,n let ¢; be the number of connections from computer j to the
others. We are given that each ¢; is one of the n — 1 integers between 2 and n; since there are n
of the ¢;’s, two must be identical by the pigeonhole principle. The corresponding computers are
connected to the same number of other computers.

(b) Copsider the network as a graph with the vertices being computers and the edges being the
connections between computers. Then the test we want Lo do amounts to finding an Euler circuit,
which can be done iff every vertex has even degree. Thus the test can be done iff each computer
has connections to an even number of other computers.

Problem 3: Find a formula for the number of triples (z,y, z) of nonnegative integers satisfying
z4+y+z=16
{a) and no other restrictions,

(b) subject to
T4 A y>4 A 224,

(¢) subject to
2<6 A y<6 A z<6.

Solution 3: (a) This is the number of ways to choose 16 objects of three kinds with repetition:
By stars and bars, this is
{18
(1) o

(b) The restriction that we must have at least four of each kind is dealt with by taking four of each
kind to begin with, leaving four objects to be chosen from three kinds: By stars and bars, this is

(8)-»

(c) Let A be the set of solutions found in (a), and let
A= {(z,4,2) € Alz 2 T}, Aa = {(=,1,2) € Aly 2 T}, As = {(z,,2) € A|]2 > 7}
Thus we want to compute
|A—A1NANA;] = |A] - | AiNANAG| = [A]—|A;|—|Az|—| As]+|AiNAz|+|AzN Az |+ | AsNA; [ — | AN AN AS]

by inclusion-exclusion. By the approach of (b), we have (using symmetry)

11
At =14sd =14l = () ).

2
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4
[A1 N Az = [A2 N As] = [As N A| = ( 2)

and
lAlﬂAzﬂA;;{:O

since the equation cannot be satisfied if z, y and 2 are all at least 7. Thus the answer is
18 11 4
(3)- (%) (3)=¢

Problem 4: Let F., be the nth Fibonacci number defined by Fg = 0, F; = 1, Fpyy = Fn 4+ F._,
for n > 1. (They are 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, etc.)

(a) Use induction to prove that ged(Frt1, Fn} =1 for n > 1.

(b) For n > 1, let E(n) be the number of “z mod y” calculations required by the Euclidean
algorithm to compute ged(Fny1, Fn). Use induction to prove that E(n) = O(n).

Solution 4: (a) First, we have ged(F, F1) = ged(1,1) =1 for n = 1, establishing the base. Now
assume ged(Fr41, Fn) = 1. Then

ged(Frga, Faga) = ged(Fo + Fo, Fry1) = ged{(Frqas F) =1,

completing the inductive step. Note that ged(a,a + b) = ged(a, b} since any divisor of aand bisa
divisor of @ and a + b and vice versa.

(b) Let P(n) be the statement “E(n) < n.” The base case P(1) is clearly true since ged(1,1) =1
requires one 1 mod 1 calculation. For the inductive step, we fix n > 2 and assume P(n —1) is true.
Then the first step of the Euclidean algorithm for ged(Fpy1, o) reads

z=Fopn y= F
r=Fymod F,=F,, z=F, y= I,

since Fp4y = Fn + Frey and F,_y < F, imply that Fuy1 mod F, = F,_;. Ilence taking the first
step, at a cost of one £ mod y calculation, reduces god(Fr41, Fn) to ged(Fy, Fu_1). The cost of the
latter is E(n — 1) so we have E{n) = 1+ E(n —1). By the inductive assumption, E(n — 1)<n-—1
so this proves E(n) < n = O(n).

Problem 5: Let X = {a,b,c} and let S be the set of all equivalence relations on S. Consider
S as a sample space with uniform probability distribution. Let g (respectively f) be the random
variable which assigns to an equivalence relation R the cardinality of its smallest (respectively
largest) equivalence class. For example, if R is equality = then g(R) = f(R) = 1.

(a) Calculate the cardinality of S.

(b) Calculate E(f) and V{(f).

(c) Use Chebyshev’s inequality to show that there is a 60% probability that the largest equivalence
class of a randomly chosen equivalence relation on X has exactly 2 elements.

(d) Prove or disprove: f and g are independent random variables.

Solution 5: (a) Since every equivalence relation on X corresponds to a unique partition of X
into equivalence classes, we can count equivalence relations most easily by counting the partitions
of X (into disjoint nonempty subsets). They are (with values of g and f listed to the right}



09/11/2000 MON 16:30 FAX 6434330 MOFFITT LIBRARY [dooa

R g(R) f(R)
{{a}. {6}, {c}} 1 1
{{a},{b,<}} 1 2
{{b},{c,a}} 1 2
{{c}, {e.b}} 1 2
{{a,b,c}} 3 3

so |§| = 5.
(b) From the table above,

(1+2+2+243)=2

| =

E(f) =

and 1 2
V(f)=E(f2)“E(f)2=g(1+4+4+4+9)—22=g-

(c) Put r = 1/o(f) in Chebyshev’s inequality
P(If = E()| 2 ro(f) <

to pet ,
Plf—ENI 2D <o(ff=V(f) =+

Thus there is a 60% probability that the largest equivalence class of a randomly chosen equivalence
relation has cardinality strictly between E(f) —~1 =1 and E{f) + 1 = 3. But this cardinality is an
integer, so if it lies strictly between 1 and 3 then it must be exactly 2. Note that this is obvious
from the list of partitions in (a) since 3 of the 5 have f(R) = 2.

(@) Intuitively, f and g should not be independent because knowing f completely determines g.
Proof: -

P(f=3Ag=3)=¢ #35=PU=3)Plg=3).
Problem 6: Consider the following pseudocode:
function F (n, A = (al, ..., an), m, B = (b1, ..., bm), £f: A ~~> B) do i =1, m
5 : =0
do j :=1, n
if(f(aj) = bi) s := 5 + 1
end do
if(s != 1) return F := False
end do
return F = True

(a) What does it compute?
(b) What is its worst-case complexity in terms of m and n in big-O notation?

Solution 6: (a) It returns True iff the input function f is a bijection (a one-to-one correspondence)
between A and B.

(b) The worst case is when s is always equal to 1 in the inner loop, so the outer loop does not
terminate early. Then F requires mn evaluations of £, so the worst-case complexity is O(mn).

Problem 7: Prove or disprove: the following graphs are isomorphic.

4

4
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D

Solution 7: The two graphs are not isomorphic: the left one contains a subgraph isomorphic to
K (either of the left or right triangles will do) while the right one does not. More directly, the left
graph contains three mutually adjacent vertices while the right does not. Note that the two graphs
have the same number of vertices and edges and the vertices all have degree 3, so the obvious tests

will not rule out isomorphism.

Problem 8: Suppose that a randomly chosen child is male with probability 1/2 and female with
probability 1/2. Consider two families 1 and 2 with two children each. Let A4, be the event that
family 1 has at least one male child and A; be the event that the oldest child in family 2 is male.
For i = 1,2 let C; be the event that family number ¢ has two maie children.

(2) What is the sample space §7 What is the probability P(z) of each point z € S? What is the
total expected number of male children in both families?

{b) Calculate the probabilities P(A,;) and P{Az).

(c) Calculate the conditional probabilities P(Ci|A;1) and P(Cy|A;). Given that A; and Aj; take
place, which is more likely: C; or Cy7

(d) Define what it means for two events A and B to be independent.

{e) For which 7 and j are A; and C; independent?

Solution 8: {a) Let child number j in family i be represented by a Boolean variable ¢;; = 0 if
femnale and 1 if male. The sample space is then the set of 4-bit strings § = {ciicizcaicanlci; = 0,1},
Since the sample space has 2% = 16 equally likely points, P(z) = 1/16 for any = € 5. The total
expected number of male children is 1/2.

(b) Since A; contains 3 -4 = 12 and A, contains 4 - 2 = 8 points, we have P(A;) = 12/16 = 3/4
and P(A.) = 8/16 =1/2.

(c) First, we observe that P(C;) = P(C:) = 1/4. Since A; € C; for i = 1,2, we have P(CinA;) =
1/4 for i == 1,2 as well. By definition of conditional probability, then,

P(CinA)

P(CilA) = PA) 1/3
and P(C> N Az)
P(CQ'AQ) = W = 1/2.

Thus given A; and Ay, C is more likely than C.

(d) Two events A and B are independent iff P(AN B) = P(A)P(B).

(e) Since P(Ci|A;) # P(C;) for i = 1,2, C; is not independent of A;. We expect that Cy should
be independent of A, and C; independent of A, because they are events concerned with different
families. To verify this, we need only calculate

P(C, N Ag) = P({1110,1111}) = 2/16 = (1/4) - (1/2) = P(C1)P(Ay)
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and
" P(C3 N Ay) = P({1011,0111,1111}) = 3/16 = (1/4) - (3/4) = P(C2)P(A1).

Problem 9: Let p and ¢ be propositional variables. Let X be the following set of propositions in

the variables p and ¢:
X={T,F,p,q,pANq,pA—q,pV q,pD g}

Define a relation B on X by aRS iff o — § is a tautology.

(a) Construct a truth table showing the values of all elements of X (except T and F )-
(b) Check that R is a partial order on X.

(¢) Construct the Hasse diagram for the poset P = (X, R).

{d) List P in a topologically sorted order.

Solution 9: (a) The truth table reads:

pAg pVg ph~q pbg
T T F F
F T F T
F T T T
F F F F

N e
o N Nl

(b) We need to check reflexivity, antisymmetry and transitivity. First, R is reflexive because for
any proposition r, the implication r — 7 is a tautology: eitherris ForT andr = risT in either
case. For antisymmetry, we observe that there are no two distinct elements a and b of X such that
a — b and b — a are both tautologies; thus R is antisymmetric. Transitivity is equivalent to the
statement that (p —+ ¢A g = r) = (p — 1) is a tautology, which is transitivity of implication. To
prove it, suppose p — 7 is F. Then pis T and ris F. If gis T then ¢ = r is F, whileif g is F
then p — g is F; in either case, we are done.

{(c) The Hasse diagram looks like:

(d) Topologically sorted orders for P are found by pulling off a minimal element at each step. They
include
F,pA-4,p@¢pPAeP 4PV ST

F,P/\Q,P,Q,PA_'Q,PQQ,})VQ,T
FsP/\QaPA —*q,p,q,p@q,PVq,T

and many others.



