Math 55: First Midterm - Solutions

Problem 1: Prove that $(p \land q) \rightarrow p$ is a tautology.

Solution:

$$\begin{array}{ccc} (p \wedge q) \! \to \! p \\ \Leftrightarrow & \neg (p \wedge q) \vee p & \text{Definition of implication} \\ \Leftrightarrow & (\neg p \vee \neg q) \vee p & \text{De Morgan} \\ \Leftrightarrow & \neg p \vee \neg q \vee p & \text{Associativity} \\ \Leftrightarrow & \neg p \vee p \vee \neg q & \text{Commutativity} \\ \Leftrightarrow & (\neg p \vee p) \vee \neg q & \text{Associativity again} \\ \Leftrightarrow & T \vee \neg q & \text{Excluded middle} \\ \Leftrightarrow & T & \text{Domination} \end{array}$$

Problem 2: Let f, g and h be defined by:

$$f: \mathbf{R} \to \mathbf{R}, \qquad f(x) = x^3$$

$$g: \mathbf{Z} \to \mathbf{Z}, \qquad g(n) = n^3$$

$$h: \mathbf{R} \to \mathbf{Z} \times \mathbf{Z}, \qquad h(x) = (\lfloor x \rfloor, \lceil x \rceil)$$

For each of the functions f, g and h, state whether the function is 1-1, whether it is onto, and whether it is invertible.

Solution: Since every real number x has a unique cube root $\sqrt[3]{x}$, f is 1-1 and onto and therefore invertible.

Since not every integer is a cube (for example, $2 = n^3$ implies n is between 1 and 2 so $n \notin \mathbb{Z}$), g is not onto. However, $n^3 = m^3$ implies m = n, so g is 1-1. Since g is not onto, it is not invertible.

Since x = 1/2 and x = 1/4 are both mapped to h(x) = (0,1), h is not 1-1. Since $(0,100) \neq (\lfloor x \rfloor, \lceil x \rceil)$ for any $x \in \mathbb{R}$, h is not onto. Since h is not 1-1 and not onto it is certainly not invertible.

Problem 3: Show that

$$\sum_{k=1}^{n} k^2 = O(n^3).$$

Solution:

$$\sum_{k=1}^{n} k^{2} = 1 + 4 + 9 + \dots + n^{2} \le n^{2} + n^{2} + \dots + n^{2} = n^{3} = O(n^{3}).$$

Problem 4: Construct pseudocode for an algorithm which accepts input consisting of two finite sets $A = \{a_1, a_2, \ldots, a_n\}$ and $B = \{b_1, b_2, \ldots, b_m\}$ and a function $f: A \to B$, and returns output T if f is onto and F if f is not onto.

Solution:

```
Boolean function onto( set A, set B, function f:A\rightarrow B):

for b\in B

hit := F

for a\in A

if (b=f(a)) hit := T

if (hit = F) return(onto := F)

return(onto := T)
```

Problem 5: Suppose $a \equiv b$ and $c \equiv d \mod 17$. Show that $ac \equiv bd \mod 17$.

Solution: By definition of "mod," there are integers p and q such that a = b + 17p and c = d + 17q. Then

$$ac - bd = (b + 17p)(d + 17q) - bd = (pq + pd + qb)17 \equiv 0 \mod 17.$$

By definition, $ac \equiv bd \mod 17$.

Problem 6: Use the Euclidean algorithm to compute gcd(277, 123).

Solution:

$$x = 277$$
 $y = 123$
 $r = 277 \mod 123 = 31$ $x = 123$ $y = 31$
 $r = 123 \mod 31 = 30$ $x = 31$ $y = 30$
 $r = 31 \mod 30 = 1$ $x = 30$ $y = 1$
 $r = 30 \mod 1 = 0$ $x = 1 = \gcd(277, 123)$ $y = 0$

Problem 7: Suppose x is an integer with $0 \le x \le 1000$ and

$$x \mod 7 = 3$$
, $x \mod 11 = 5$, $x \mod 13 = 7$.

(a) Is x uniquely determined by this information? Why or why not?

Solution: Yes, by the Chinese Remainder Theorem, because 7, 11 and 13 are pairwise relatively prime and $7 \cdot 11 \cdot 13 = 1001$.

(b) Calculate $x^2 \mod 7$ and $x^3 \mod 11$.

Solution:

$$x^2 \mod 7 = (x \mod 7)^2 = 9 \equiv 2 \mod 7$$

 $x^3 \mod 11 = (x \mod 11)^3 = 125 \equiv 4 \mod 11$