Math 185 (Section 3) Midterm Exam March 4, 2003

K. Hare

NAME (printed)	:		
		(Family Name)	(First Name)
Signature	;		
C: 1 : NT 1			
Student Number	:		

- (1) Do NOT open this test booklet until told to do so
- (2) Do ALL your work in this test booklet
- (3) SHOW ALL YOUR WORK
- (4) CHECK THAT THERE ARE 6 PROBLEMS
- (5) NO CALCULATORS
- (6) No pushing, biting, or hitting

1	2	3	4	5	6	TOTAL

1 a: (3 pts) Define what it means for a set D to be i) open, ii) closed, iii) a domain

- i) open: A set D is open if all points $z \in D$ are interior points.
- ii) closed: A set D is closed if D contains its boundary.
- iii) a domain: A set D is a domain if it is an open connected set.

b: (4 pts) Find the principle root of

$$\left(-\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i\right)^{\frac{1}{3}}$$

$$\left(-\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i\right)^{\frac{1}{3}} = e^{\frac{1}{3}\operatorname{Log}\left(-\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i\right)}$$

$$= e^{\frac{1}{3}(\ln(1) + \frac{3\pi}{4}i)}$$

$$= e^{\frac{1}{3}(\frac{3\pi}{4}i)}$$

$$= e^{\frac{\pi}{4}i}$$

$$= \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i$$

c: (3 pts) Find in Cartesian (rectangular) co-ordinates:

$$(-1+\sqrt{3}i)^{100}$$

$$(-1+\sqrt{3}i)^{100} = \left(2e^{\frac{2\pi i}{3}}\right)^{100}$$

$$= 2^{100}e^{\frac{200\pi i}{3}}$$

$$= 2^{100}e^{\frac{2\pi i}{3}+66\pi i}$$

$$= 2^{100}e^{\frac{2\pi i}{3}}$$

$$= 2^{99}(-1+\sqrt{3}i)$$

2 a: (3 pts) Find a harmonic conjugate for u(x,y) = x + 2xy.

Notice that $u_x(x,y) = 2y+1 = v_y(x,y)$ which implies that $v(x,y) = y^2 + y + \phi(x)$.

Notice that $u_y(x,y) = 2x = -v_x(x,y) = -\phi'(x)$ which implies that $\phi(x) = -x^2 + c$

Thus we have that

$$v(x,y) = y^2 - x^2 + y + c$$

is the harmonic conjugate of u(x, y).

b: (3 pts) Find the principle value of i^i .

$$i^{i} = e^{i\text{Log}(i)}$$

$$= e^{i(\log(1) + \frac{i\pi}{2})}$$

$$= e^{i\frac{i\pi}{2}}$$

$$= e^{-\frac{\pi}{2}}$$

c: (4 pts) Find the following limits, or state why they do not exist

i)
$$\lim_{z\to\infty} \frac{z^2+1}{1-iz^2}$$
,

$$\lim_{z \to \infty} \frac{z^2 + 1}{1 - iz^2} = \lim_{z \to \infty} \frac{1 + 1/z^2}{1/z^2 - i} = \frac{1}{-i} = i$$

ii)
$$\lim_{z\to\infty}\sin(z)$$
,

If the limit existed, it would exist along any line going towards infinity. We know that along the x-axis that $\sin(z)$ oscillates between -1 and 1. Thus the limit does not exist along the real axis. Thus the limit does not exist.

iii)
$$\lim_{z\to\infty} \text{Log}(z)$$
,

$$\lim_{z \to \infty} \text{Log}(z) = \lim_{z \to \infty} \log(|z|) + \arg zi = \infty$$

iv)
$$\lim_{z\to\infty} \frac{1}{z^2+1}$$

$$\lim_{z \to \infty} \frac{1}{z^2 + 1} = \lim_{z \to \infty} \frac{1/z^2}{1 + 1/z^2} = 0/1 = 0$$

3 a: (3 pts) Let $f(z) = \bar{z}$. Use the Cauchy-Riemann equations to show that f'(z) does not exists for all complex numbers z.

Notice that f(z) = x - yi. Thus $u_x = 1 \neq -1 = v_y$. Thus the Cauchy-Riemann equations do not hold. Thus f'(z) does not exist anywhere.

b: (5 pts) Let $f(z) = \bar{z}$. Use the formal definition of the derivative to show that f'(z) does not exists for all complex numbers z.

The formal definition of the limit is

$$\lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z} = \lim_{\Delta z \to 0} \frac{\bar{z} + \bar{\Delta}z - \bar{z}}{\Delta z} = \lim_{\Delta z \to 0} \frac{\bar{\Delta}z}{\Delta z}$$

We see that if we approach along the real axis, this limit is 1. If we approach along the imaginary axis, this limit is -1. Thus this limit does not exist. Thus f'(z) does not exists anywhere.

c: (4 pts) Using the formal definition of a limit, show that

$$\lim_{z \to i} 1 + 2\bar{z} = 1 - 2i.$$

Pick $\delta = \frac{\epsilon}{2}$. Then we get that

$$\begin{aligned} |z-i| &< \delta = \frac{\epsilon}{2} \\ \Rightarrow & |2z-2i| &< \epsilon \\ \Rightarrow & |2\bar{z}+2i| &< \epsilon \\ \Rightarrow & |2\bar{z}+1-(1-2i)| &< \epsilon \end{aligned}$$

Which gives the desired result.

4 a: (4 pts) Let v(x,y) be a harmonic conjugate of u(x,y). Why must $U(x,y) = e^{u(x,y)} \cos(v(x,y))$ be harmonic?

If v(x,y) is the harmonic conjugate of u(x,y), then we know that u(x,y) + iv(x,y) is analytic. Thus we know that $e^{u(x,y)+iv(x,y)}$ is analytic. Notice that

$$e^{u(x,y)+iv(x,y)} = e^{u(x,y)}\cos(v(x,y)) + ie^{u(x,y)}\sin(v(x,y)).$$

But the real part of analytic functions are harmonic. Thus

$$e^{u(x,y)}\cos(v(x,y))$$

is harmonic.

b: (4 pts) Let f be an entire function such that $f(\bar{z}) = -\overline{f(z)}$. Show that f must be purely imaginary on the real axis.

Soln 1: Let F(z) = if(z). Thus we see that

$$F(\bar{z}) = if(\bar{z}) = -i\overline{f(z)} = \overline{if(z)} = \overline{F(z)}$$

Thus F(z) satisfies the reflection principle, and is real on the real line. Thus f(z) is purely imaginary on the real line.

Soln 2: Notice that on the real line that $\bar{z} = z$. This we have

$$-\overline{f(z)} = f(\bar{z}) = f(z)$$

This tells us that f(z) is purely imaginary.

c: (4 pts) Show that for all z_0 , z_1 in the complex numbers that $\int_{z_0}^{z_1} f(z) dz$ is path independent if and only if

$$\int_C f(z) \ dz = 0$$

for all closed contours C in the complex plane.

 \Rightarrow Assume that $\int_{z_0}^{z_1} f(z) dz$ is path independent. Let C be a closed contour. Let $z_0 = z_1$ be a point on the contour. Then

$$\int_C f(z) \ dz = \int_{z_0}^{z_1} f(z) \ dz = \int_{z_0}^{z_0} f(z) \ dz = 0$$

and we are done.

 \Leftarrow Assume that $\int_C f(z) dz = 0$ for all closed contours. Consider two paths C_1 and C_2 between z_0 and z_1 . Let C be the close contour created by matching up C_1 to $-C_2$. Thus we have that:

$$0 = \int_C f(z) \ dz = \int_{C_1} f(z) \ dz - \int_{C_2} f(z) \ dz$$

and this implies that

$$\int_{C_1} f(z) \ dz = \int_{C_2} f(z) \ dz$$

and hence integration is path independant.

5 a: (5 pts) Show that

$$\sinh^{-1}(z) = \log(z + \sqrt{z^2 + 1})$$

Let $w = \sinh^{-1}(z)$. Then we know that

$$\sinh(w) = z$$

$$\Rightarrow \frac{e^{w} - e^{-w}}{2} = z$$

$$\Rightarrow e^{w} - e^{-w} = 2z$$

$$\Rightarrow e^{w} - 2z - e^{-w} = 0$$

$$\Rightarrow e^{2w} - 2ze^{w} - 1 = 0$$

Thus by the quadratic formula we get

$$e^{w} = \frac{2z \pm \sqrt{4z^{2} + 4}}{2}$$

$$\Rightarrow e^{w} = z \pm \sqrt{z^{2} + 1}$$

$$\Rightarrow w = \log(z \pm \sqrt{z^{2} + 1})$$

Which is the desired result.

b: (3 pts) Using the equation from part a find $\sinh^{-1}(i)$.

$$\sinh^{-1}(i) = \log(i \pm \sqrt{-1+1}) = \log(i) = \frac{\pi}{2}i + 2\pi ik$$

where k is any integer

6 a: (4 pts) Let

$$C = \begin{cases} t + ti & \text{when } 0 \le t \le 1\\ t + 2i - ti & \text{when } 1 \le t \le 2\\ 4 - t & \text{when } 2 \le t \le 4 \end{cases}$$

Find

$$\int_C \cos(z) \ dz$$

Notice that C is a closed contour. Notice that $\cos(z)$ has an continuous anti-derivative in the complex plane. Thus

$$\int_C \cos(z) \ dz = 0$$

b: (4 pts) Using
$$C = \{e^{it}: 0 \le t \le 4\pi\}$$
 find
$$\int_C \frac{1}{z} dz$$

$$\int_C \frac{1}{z} dz = \int_0^{4\pi} \frac{1}{e^{it}} i e^{it} dt = \int_0^{4\pi} i dt = 4\pi i$$