ME 106 Mid-term Exam II

Remember, there is no partial credit for answers with incorrect dimensions.

Consider the syringe in Fig. 1 filled with constant density ρ fluid and surrounded by air at constant pressure $P_{\text {atm }}$. From class we know that there are relationships among the force $|\mathbf{F}|$ applied to the left of the plunger (in the x direction), the velocity of the jet of water exiting the syringe $V_{\text {exit }}$ with cross-sectional area a, the velocity of the plunger V_{p}, and the cross-sectional area A_{p} of the plunger and of the syringe at the plunger. We used the approximation that the radius of the syringe r was small, so $r g \ll V_{\mathrm{p}}^{2} / 2$, where g is the acceleration of gravity, so that gravitational effects could be ignored while using Bernoulli's equation. We also assumed that the flow was steady in time and that the force applied on the left side of the plunger was equal to the integral of the fluid pressure P_{p} on the right side of the plunger integrated over the area of the plunger.

Fig. 1

1) Now consider the same syringe, with the same approximations, but with a leak in the syringe that results in a secondary, exiting jet with cross-sectional area $a_{\text {leak }}$, velocity $V_{\text {leak }}$ and at an angle $\theta_{\text {leak }}$ with respect to the horizontal. See Fig. 2. In terms of the force $|\mathbf{F}|$ applied to the left side of the plunger, what are $V_{\text {exit }}$ and $V_{\text {leak }}$, and V_{p} ? Hint: Because we are ignoring gravity, P_{p} is constant and $P_{\mathrm{p}}=|\mathbf{F}| / A_{\mathrm{p}}$.

Fig. 2
2) Think carefully before answering this question. If you do it with brute force, you will likely run out of time. Suppose there are now N leaks in the syringe, not just one as in the previous question. Let each leak be a jet of water coming out the side of the syringe with cross-sectional area, a_{j}, at angle θ_{j}, and with a velocity V_{j}, where $j=1,2, \cdots, N$. What are $V_{\text {exit }}$ and V_{p} ? Hint: define $a_{\text {leak }} \equiv \sum_{j=1}^{N} a_{j}$. Express your answer in terms of $a_{\text {leak }}$.
3) Now consider the super-syringe in Fig. 3, which has two plungers. The cross-sectional area of the main syringe is still A_{p}, and that of the auxiliary with the second plunger is A_{p}^{\prime}. The velocity of the main plunger into the syringe is V_{p}, while the velocity of plunger into the auxiliary tube is V_{p}^{\prime}. Find $V_{\text {exit }}$ and also P_{p} and P_{p}^{\prime}, the pressures in the fluid just to the right of the two plungers. Assume that all streamlines exit the syringe with the same velocity $V_{\text {exit }}$. The average height H of the second plunger above the main part of the syringe is much greater than the radii of the syringe. DO NOT ASSUME THAT H IS SMALL; ITS EFFECT SHOULD BE INCLUDED IN THE BERNOULLI EQUATION.

Fig. 3
4) Now consider the simple syringe in Fig. 4. Here the cross-sections of the syringe, the exit jet of water, and the plunger are square rather than circular. Let the cross-section of the plunger be $H \times H$ and of the exit jet be $h \times h$. Let H and h be large, so we cannot ignore gravity in the Bernoulli equation. The force applied to the left side of the plunger is \mathbf{F}, so we can assume that $\int P_{\mathrm{p}}(z) d y d z=|\mathbf{F}|$, where $P_{\mathrm{p}}(z)$ is the pressure of the fluid in the syringe next to the plunger and is a function of z and where the integral is over the cross-section of the syringe. Note that χ is the distance between the bottom of the syringe and the bottom of the exit jet. Because the velocity of the fluid at the plunger is equal to V_{p}, it is constant (independent of z and y). Therefore we can assume that the vorticity of the flow at the plunger as zero, which reduces Euler's equation to:

$$
\begin{equation*}
\nabla\left(V^{2} / 2+P / \rho+g z\right)=0 \rightarrow \partial\left(V^{2} / 2+P / \rho+g z\right) / \partial z=0 \quad \text { at the plunger. } \tag{1}
\end{equation*}
$$

Find $P_{\mathrm{p}}(z)$ at the plunger. Hint: P_{atm} is NOT part of the answer, but $|\mathbf{F}|$ is. Find the value of the Bernoulli constant $\left(V^{2} / 2+P / \rho+g z\right)$ along each streamline. Find an algebraic equation for V_{p} in terms of $|\mathbf{F}|, \chi$ and other variables. Hints: $V_{\text {exit }}$ is a function of z. Let $z=0$ at the bottom of the syringe, so the plunger spans $0 \leq z \leq H$ and the exit jet spans $\chi \leq z \leq \chi+h$. For $\alpha \neq 1$, $\int(a+b z)^{\alpha} d z=\left[(a+b z)^{(1+\alpha)}\right] /[b(1+\alpha)]$, where a, b, and α are constants.

Fig. 4

ME 106 - Midterm 2 - solutions

1 Problem 1

First, mass conservation tells us

$$
\begin{equation*}
\rho a V_{\text {exit }}+\rho a_{\text {leak }} V_{\text {leak }}=\rho A_{p} V_{p} \tag{1}
\end{equation*}
$$

Constant ρ means

$$
\begin{equation*}
a V_{\text {exit }}+a_{\text {leak }} V_{\text {leak }}=A_{p} V_{p} \tag{2}
\end{equation*}
$$

Second, using Bernoulli twice (at almost constant height) gives

$$
\frac{1}{2} V_{\text {leak }}^{2}+\frac{P_{a t m}}{\rho}=\frac{1}{2} V_{p}^{2}+\frac{P_{p}}{\rho}=\frac{1}{2} V_{e x i t}^{2}+\frac{P_{a t m}}{\rho}
$$

That implies

$$
V_{\text {leak }}=V_{\text {exit }}
$$

Substitution into Eq.(2) gives

$$
V_{\text {exit }}=\frac{A_{p} V_{p}}{a+a_{\text {leak }}}
$$

Solving the Bernoulli equation for V_{p} shows

$$
\begin{equation*}
V_{p}^{2}=V_{e x i t}^{2}+2 \frac{P_{a t m}-P_{p}}{\rho} \tag{3}
\end{equation*}
$$

Substituting $V_{\text {exit }}$ into Eq.(3)

$$
\begin{equation*}
V_{p}^{2}=\left(\frac{A_{p} V_{p}}{a+a_{\text {leak }}}\right)^{2}+2 \frac{P_{a t m}-P_{p}}{\rho} \tag{4}
\end{equation*}
$$

Rearranging

$$
\begin{align*}
& V_{p}^{2}\left\{1-\left(\frac{A_{p}}{a+a_{\text {leak }}}\right)^{2}\right\}=2 \frac{P_{\text {atm }}-P_{p}}{\rho} \tag{5}\\
& V_{p}=\sqrt{\frac{2\left(P_{\text {atm }}-P_{p}\right)}{\rho\left\{1-\left(\frac{A_{p}}{a+a_{\text {leak }}}\right)^{2}\right\}}}, P_{p}=|\mathbf{F}| / A_{p}
\end{align*}
$$

Substituting V_{p} into the boxed equation for $V_{\text {exit }}$ gives all the velocities in terms of the given force and areas.

2 Problem 2

For each leak we can consider a streamline emanating from the plunger and exiting the leak. We can write a Bernoulli equation for each case

$$
\frac{1}{2} V_{e x i t}^{2}+\frac{P_{a t m}}{\rho}=\frac{1}{2} V_{j}^{2}+\frac{P_{a t m}}{\rho}=\frac{1}{2} V_{p}^{2}+\frac{P_{p}}{\rho}, \quad j=1,2, \ldots, N
$$

Similarly to problem (1)

$$
V_{j}=V_{\text {exit }} \quad, j=1,2, \ldots, N
$$

Mass conservation implies that

$$
\begin{equation*}
\rho a V_{e x i t}+\sum_{j=1}^{N} \rho a_{j} V_{j}=\rho A_{p} V_{p} \tag{6}
\end{equation*}
$$

Therefore

$$
\begin{gather*}
V_{\text {exit }}\left(a+\sum_{j=1}^{N} a_{j}\right)=A_{p} V_{p} \tag{7}\\
V_{\text {exit }}=\frac{A_{p} V_{p}}{\left(a+\sum_{j=1}^{N} a_{j}\right)} \tag{8}
\end{gather*}
$$

With $a_{\text {leak }} \equiv \sum_{j=1}^{N} a_{j}$, we have exactly the same result for $V_{\text {exit }}$ as problem (1)

$$
V_{e x i t}=\frac{A_{p} V_{p}}{a+a_{\text {leak }}}
$$

V_{p} is found in exactly the same way as question (1), and since we have found $V_{\text {exit }}$ to be identical to question (1), V_{p} is also identical.

3 Problem 3

For this problem, we begin by considering a mass balance over the entire syringe. Because the exit velocity and the two plunger velocities are each constant, the flow through each cross-sectional area is just equal to velocity \times area \times density:

$$
\rho v_{e x i t} a=\rho V_{p} A_{p}+\rho V_{p}^{\prime} A_{p}^{\prime}
$$

Since $\rho, V_{p}, V_{p}^{\prime}$, a, A_{p}, and A_{p}^{\prime} are all given, this one equation only contains one unknown: $V_{\text {exit }}$. Solving for $V_{\text {exit }}$, we see that

$$
V_{\text {exit }}=\frac{A_{p} V_{p}+A_{p}^{\prime} V_{p}^{\prime}}{a}
$$

Next, we solve for the next two variables by applying Bernoulli's equation along two different streamlines. First, let's look at a streamline that starts in the main syringe right next to the first plunger and passes through the nozzle to exit to atmospheric pressure. Since we're told to ignore the effects of gravity in this section of the syringe, the resulting relationship is:

$$
\frac{V_{e x i t}^{2}}{2}+\frac{p_{a t m}}{\rho}=\frac{V_{p}^{2}}{2}+\frac{p_{p}}{\rho}
$$

From above, we know an expression for $V_{\text {exit }}$, which we substitute in to the equation and solve for p_{p} :

$$
p_{p}=p_{a t m}+\frac{\rho}{2}\left(\frac{A_{p} V_{p}+A_{p}^{\prime} V_{p}^{\prime}}{a}\right)^{2}-\frac{\rho v_{p}^{2}}{2}
$$

Next, let's look at a streamline that starts in the auxiliary tube next to the second plunger (at a height of H) and that passes through the nozzle to exit to atmospheric pressure. Between these two points, the Bernoulli equation gives us that

$$
\frac{V_{e x i t}^{2}}{2}+\frac{p_{a t m}}{\rho}=\frac{V_{p}^{\prime 2}}{2}+\frac{p_{p}^{\prime}}{\rho}+g H
$$

Again, we substitute for $V_{e x i t}$ and solve for p_{p}^{\prime} :

$$
p_{p}^{\prime}=p_{a t m}+\frac{\rho}{2}\left(\frac{A_{p} V_{p}+A_{p}^{\prime} V_{p}^{\prime}}{a}\right)^{2}-\frac{\rho v_{p}^{\prime 2}}{2}-\rho g H
$$

4 Problem 4

We are given in the problem statement that the vorticity ω is zero along the plunger. Meanwhile, from Euler's equation we know that

$$
\mathbf{v} \times \omega=\frac{\partial \mathbf{v}}{\partial t}+\nabla\left(\frac{v^{2}}{2}+\int_{p_{0}}^{p} \frac{d p}{\rho}+g z\right)
$$

We take this problem to be steady flow, so the $\frac{\partial v}{\partial t}$ term drops out. Now, let's apply this equation to a thin cross-sectional area of the syringe just next to the plunger. In this thin area, the vorticity must be zero for the reasons given in the problem statement. Similarly, in this area, we know that the fluid velocity must be that of the plunger, so $v=v_{p}$. Then we have that:

$$
\begin{aligned}
\hat{z} \cdot(\mathbf{v} \times \mathbf{0}) & =\hat{z} \cdot\left(\nabla\left(\frac{v_{p}^{2}}{2}+\frac{p_{p}}{\rho}+g z\right)\right) \\
0 & =\frac{\partial}{\partial z}\left(\frac{v_{p}^{2}}{2}+\frac{p_{p}}{\rho}+g z\right)
\end{aligned}
$$

Let's look at what this means. We've just shown that the Bernoulli function has the same value all along the plunger, which means that every streamline starting at the plunger has the same Bernoulli constant. Along each of these streamlines, the value of the Bernoulli function is the same, so the Bernoulli function is constant throughout the flow.

Now, to find p_{p}, we use the distributive property to break this last relationship up further:

$$
0=\frac{\partial}{\partial z}\left(\frac{v_{p}^{2}}{2}\right)+\frac{\partial}{\partial z}\left(\frac{p_{p}}{\rho}+g z\right)
$$

However, the plunger is a rigid body that's moving axially along the syringe. Its velocity v_{p} must be constant in z , which means that $\frac{\partial}{\partial z}\left(\frac{v_{p}^{2}}{2}\right)=0$. Substituting this in to the above, we see that

$$
\frac{\partial}{\partial z}\left(\frac{p_{p}}{\rho}+g z\right)=0
$$

If we integrate this expression in z, we see that

$$
p_{p}(z)=p_{0}-\rho g z
$$

where p_{0} is a constant of integration. To find p_{0}, we need to make use of the fact that we know the force F that is being applied to the plunger. Because the pressure of the fluid just to the right of the plunger is not constant, we need to integrate over the cross-sectional area of the syringe to obtain a relationship between p_{p} and F. Letting $\mathrm{z}=0$ at the bottom of the syringe, we see that:

$$
\begin{aligned}
|F| & =\int p_{p}(z) d A \\
& =H \int_{0}^{H} p_{p}(z) d z \\
& =p_{0} H^{2}-\frac{\rho g H^{3}}{2}
\end{aligned}
$$

We solve for p_{0} :

$$
p_{0}=\frac{|F|}{H^{2}}+\frac{\rho g H}{2}
$$

Substituting in for p_{0}, we find that:

$$
p_{p}(z)=\frac{|F|}{H^{2}}+\frac{\rho g H}{2}-\rho g z
$$

Now that we've solved for p_{p}, we have enough information to evaluate the Bernoulli function at the plunger and thus, as shown above, find its value throughout the flow in terms of v_{p}, which is still unknown.

$$
\begin{aligned}
\frac{v_{p}^{2}}{2}+\frac{p_{p}}{\rho}+g z & =\frac{v_{p}^{2}}{\rho}+\frac{1}{\rho}\left(\frac{|F|}{H^{2}}+\frac{\rho g H}{2}-\rho g z\right)+g z \\
& =\frac{v_{p}^{2}}{\rho}+\frac{|F|}{\rho H^{2}}+\frac{g H}{2}
\end{aligned}
$$

We note that this value is, as we expected, a constant. Now that we have the value of Bernoulli's function everywhere in the flow, we use it to find the velocity at the exit.

$$
\begin{aligned}
\frac{v_{p}^{2}}{\rho}+\frac{|F|}{\rho H^{2}}+\frac{g H}{2} & =\frac{v_{\text {exit }}^{2}(z)}{2}+\frac{p_{a t m}}{\rho}+g z \\
v_{\text {exit }}(z) & =\sqrt{v_{p}^{2}+\frac{2|F|}{\rho H^{2}}+g H-\frac{2 p_{a t m}}{\rho}-2 g z}
\end{aligned}
$$

Finally, to solve for v_{p}, we need one final equation: that of mass conservation. We remember that $v_{\text {exit }}$ is not constant in z, so we must integrate to find the flow rate leaving the syringe through the exit.

$$
\begin{aligned}
\rho H^{2} v_{p} & =\rho \int v_{\text {exit }} d A \\
& =\rho h \int_{\chi}^{\chi+h} v_{\text {exit }} d z \\
& =\rho h \int_{\chi}^{\chi+h} \sqrt{v_{p}^{2}+\frac{2|F|}{\rho H^{2}}+g H-\frac{2 p_{\text {atm }}}{\rho}-2 g z d z} \\
& =\rho \frac{-h}{3 g}\left[\chi+h\left(v_{p}^{2}+\frac{2|F|}{\rho H^{2}}+g H-\frac{2 p_{\text {atm }}}{\rho}-2 g z\right)^{\frac{3}{2}}\right. \\
& =\rho \frac{-h}{3 g}\left[\left(v_{p}^{2}+\frac{2|F|}{\rho H^{2}}+g H-\frac{2 p_{a t m}}{\rho}-2 g(\chi+h)\right)^{\frac{3}{2}}-\left(v_{p}^{2}+\frac{2|F|}{\rho H^{2}}+g H-\frac{2 p_{a t m}}{\rho}-2 g \chi\right)^{\frac{3}{2}}\right]
\end{aligned}
$$

$$
\frac{3 g H^{2} v_{p}}{h}=\left(v_{p}^{2}+\frac{2|F|}{\rho H^{2}}+g H-\frac{2 p_{a t m}}{\rho}-2 g \chi\right)^{\frac{3}{2}}-\left(v_{p}^{2}+\frac{2|F|}{\rho H^{2}}+g H-\frac{2 p_{a t m}}{\rho}-2 g(\chi+h)\right)^{\frac{3}{2}}
$$

