








ME 106 - Midterm 2 - solutions

1 Problem 1

First, mass conservation tells us

ρaVexit + ρaleakVleak = ρApVp (1)

Constant ρ means

aVexit + aleakVleak = ApVp (2)

Second, using Bernoulli twice (at almost constant height) gives
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That implies

Vleak = Vexit

Substitution into Eq.(2) gives

Vexit = ApVp

a+aleak

Solving the Bernoulli equation for Vp shows
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Substituting Vexit into Eq.(3)
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Substituting Vp into the boxed equation for Vexit gives all the velocities in terms of the
given force and areas.

2 Problem 2

For each leak we can consider a streamline emanating from the plunger and exiting the leak.
We can write a Bernoulli equation for each case
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Similarly to problem (1)

Vj = Vexit , j = 1, 2, ..., N

Mass conservation implies that

ρaVexit +
N∑

j=1

ρajVj = ρApVp (6)

Therefore

Vexit(a +
N∑

j=1

aj) = ApVp (7)

Vexit =
ApVp

(a +
∑N

j=1 aj)
(8)

With aleak ≡
∑N

j=1 aj, we have exactly the same result for Vexit as problem (1)

Vexit = ApVp

a+aleak

Vp is found in exactly the same way as question (1), and since we have found Vexit to be
identical to question (1), Vp is also identical.

3 Problem 3

For this problem, we begin by considering a mass balance over the entire syringe. Because
the exit velocity and the two plunger velocities are each constant, the flow through each
cross-sectional area is just equal to velocity × area × density:

ρvexita = ρVpAp + ρV ′
pA

′
p
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Since ρ, Vp, V ′
p , a, Ap, and A′

p are all given, this one equation only contains one unknown:Vexit.
Solving for Vexit, we see that

Vexit =
ApVp+A′

pV ′
p

a

Next, we solve for the next two variables by applying Bernoulli’s equation along two
different streamlines. First, let’s look at a streamline that starts in the main syringe right
next to the first plunger and passes through the nozzle to exit to atmospheric pressure.
Since we’re told to ignore the effects of gravity in this section of the syringe, the resulting
relationship is:
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From above, we know an expression for Vexit, which we substitute in to the equation and
solve for pp:
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Next, let’s look at a streamline that starts in the auxiliary tube next to the second
plunger (at a height of H) and that passes through the nozzle to exit to atmospheric pressure.
Between these two points, the Bernoulli equation gives us that
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Again, we substitute for Vexit and solve for p′
p:

p′
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4 Problem 4

We are given in the problem statement that the vorticity ω is zero along the plunger. Mean-
while, from Euler’s equation we know that

v × ω =
∂v

∂t
+∇(

v2

2
+
∫ p

p0

dp

ρ
+ gz)
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We take this problem to be steady flow, so the ∂v
∂t

term drops out. Now, let’s apply this
equation to a thin cross-sectional area of the syringe just next to the plunger. In this thin
area, the vorticity must be zero for the reasons given in the problem statement. Similarly,
in this area, we know that the fluid velocity must be that of the plunger, so v = vp. Then
we have that:

ẑ · (v × 0) = ẑ · (∇(
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Let’s look at what this means. We’ve just shown that the Bernoulli function has the same
value all along the plunger, which means that every streamline starting at the plunger has
the same Bernoulli constant. Along each of these streamlines, the value of the Bernoulli
function is the same, so the Bernoulli function is constant throughout the flow.

Now, to find pp, we use the distributive property to break this last relationship up further:
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However, the plunger is a rigid body that’s moving axially along the syringe. Its velocity vp

must be constant in z, which means that ∂
∂z

(
v2

p

2
) = 0. Substituting this in to the above, we

see that
∂

∂z
(
pp

ρ
+ gz) = 0

If we integrate this expression in z, we see that

pp(z) = p0 − ρgz

where p0 is a constant of integration. To find p0, we need to make use of the fact that we
know the force F that is being applied to the plunger. Because the pressure of the fluid just
to the right of the plunger is not constant, we need to integrate over the cross-sectional area
of the syringe to obtain a relationship between pp and F. Letting z = 0 at the bottom of the
syringe, we see that:

|F | =
∫

pp(z)dA

= H
∫ H

0
pp(z)dz

= p0H
2 − ρgH3

2

We solve for p0:

p0 =
|F |
H2

+
ρgH

2
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Substituting in for p0, we find that:

pp(z) = |F |
H2 + ρgH

2
− ρgz

Now that we’ve solved for pp, we have enough information to evaluate the Bernoulli function
at the plunger and thus, as shown above, find its value throughout the flow in terms of vp,
which is still unknown.
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We note that this value is, as we expected, a constant. Now that we have the value of
Bernoulli’s function everywhere in the flow, we use it to find the velocity at the exit.
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Finally, to solve for vp, we need one final equation: that of mass conservation. We
remember that vexit is not constant in z, so we must integrate to find the flow rate leaving
the syringe through the exit.
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