Math 128A - Final Exam Spring 2000 - Nate Brown

1) (10pts) Assume M is a constant, N is a function of h and $M=N(h)+h^2+h^3+h^4+\cdots$. Use Richardson's extrapolation to find a function \tilde{N} and constants K_3,K_4,\ldots such that $M=\tilde{N}(h)+K_3h^3+K_4h^4+\cdots$. (Hint: Replace h with 2h.)

2) (10pts) Use a divided difference table to find a cubic polynomial whose graph passes through the points (-1,2), (0,1), (1,0) and (2,5).

3) (20pts) Use Taylor's theorem to prove that if $f \in C^2[a,b]$, $x_0 \in [a,b]$ and h > 0 is such that $x_0 + h \in [a,b]$ then there exists $\xi \in [x_0, x_0 + h]$ such that

$$f'(x_0) = 1/h \bigg(f(x_0 + h) - f(x_0) \bigg) - (f''(\xi)/2)h.$$

4) Let $f(x) = x^2 + (1/x)$. Let Q_n be the Newton polynomial and H_{2n+1} be the Hermite polynomial which interpolate f at distinct points $x_0, \ldots, x_n \in [2, 3]$.

a) (10pts) Find an n such that $|f(x) - Q_n(x)| < 10^{-6}$ for all $x \in [2, 3]$.

b) (10pts) Find an *n* such that $|f(x) - H_{2n+1}(x)| < 10^{-6}$ for all $x \in [2, 3]$.

5) (20pts) Use the first Lagrange interpolating polynomial (at the endpoints) to prove the simple Trapezoidal rule. That is, prove that if $f \in C^2[a,b]$ then there exists $\xi \in [a,b]$ such that

$$\int_{a}^{b} f(x)dx = \frac{b-a}{2}(f(a)+f(b)) + \frac{(b-a)^{3}}{12}f''(\xi).$$

(Use the identities $\int_a^b \frac{x-a}{b-a} dx = \int_a^b \frac{x-b}{a-b} dx = \frac{b-a}{2}$ and $\int_a^b (x-a)(x-b) dx = \frac{(b-a)^3}{6}$.)

6) Let
$$A = \begin{pmatrix} 1 & 3 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 3 \end{pmatrix}$$
.

a) (10pts) Find elementary matrices A_1, A_2 such that A_2A_1A is upper triangular.

b)(10pts) Let $\overrightarrow{b} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$. Find a vector \overrightarrow{c} and an upper triangular matrix

 \tilde{A} such that if \vec{x} is a solution to \tilde{A} $\vec{x} = \hat{c}$ then \vec{x} is also a solution to A $\vec{x} = \vec{b}$.

7) a)(10pts) If $T \in M_n(\mathbb{R})$, $\overrightarrow{c} \in \mathbb{R}^n$ describe an iterative technique for solving the fixed point type problem $\overrightarrow{x} = T \overrightarrow{x} + \overrightarrow{c}$.

b)(10pts) Describe the Jacobi method for solving linear systems.

c)(5pts) Will the Jacobi method converge if
$$A = \begin{pmatrix} 3 & 2 & 0 \\ 0 & 2 & 1 \\ 1 & 1 & 4 \end{pmatrix}$$
?

8)(10pts) Assume $A \in M_n(\mathbb{R})$ is invertible and we wish to solve the linear system $A \overrightarrow{x} - \overrightarrow{b}$. In general, the Gauss-Seidel method applied to this system will not converge. Find a linear system $B \overrightarrow{x} = \overrightarrow{c}$ with the properties that i) if \overrightarrow{x} is a solution to the equation $B \overrightarrow{x} = \overrightarrow{c}$ then \overrightarrow{x} is also a solution to the equation $A \overrightarrow{x} = \overrightarrow{b}$ and ii) the Gauss-Seidel method will converge for the equation $B \overrightarrow{x} = \overrightarrow{c}$.

9) Assume y(t) is the unique solution to the initial value problem $\frac{dy}{dt} = f(t,y)$, $a \le t \le b$, $y(a) = \alpha$. Let h = (b-a)/n, $t_i = a+ih$ $(1 \le i \le n)$, $w_0 = \alpha$ and $w_{i+1} = w_i + h\phi(t_i, w_i, h)$, $0 \le i \le n-1$, for some function ϕ .

a)(5pts) Define the local truncation error.

b)(5pts) Define consistency.

c)(5pts) Define convergence.

d)(20pts) If $f(t,y) = t^2e^t - 3t^3y$, prove that the modified Euler method will converge. (Recall that for this method $w_{i+1} = w_i + h/2[f(t_i, w_i) + f(t_{i+1}, w_i + hf(t_i, w_i))]$.)

10) a)(5pts) Let $\{y_n\}$ be a convergent sequence of numbers with limit y. Define what it means for $\{y_n\}$ to converge quadratically (i.e. with order of convergence 2).

b)(25pts) Assume $f \in C^{\infty}[a,b], p \in [a,b], f(p) = 0$ and $f'(p) \neq 0$. Prove that there exists $\delta > 0$ such that for any initial guess $x_0 \in [p-\delta, p+\delta]$, Newton's method will converge (at least) quadratically to p.