George M. Bergman 9 Evans Hall Fall 2002, Math 113, Sec. 5
Final Examination

13 Dec., 2002 12:30-3:30

- 1. (12 points, 4 points each.) Complete the following definitions.
- (a) If X is a set, then a permutation of X means ...
- (b) If R and S are commutative rings, then a map $f: R \to S$ is called a homomorphism of commutative rings if ...
- (c) A proper ideal I of a commutative ring R is said to be a maximal ideal if ...
- 2. (36 points; 4 points each.) For each of the items listed below, either give an example, or give a brief reason why no example exists. (If you give an example, you do not have to prove that it has the property stated. Examples should be specific for full credit; i.e., even if there are many objects of a given sort, you should name one.)
- (a) An element $\sigma \in S_6$ such that σ (1 2 3) σ^{-1} = (2 4 6).
- (b) An injective (i.e., one-to-one) homomorphism $f: \mathbb{Z} \to \mathbb{R}^{\times}$. (Recall that \mathbb{R}^{\times} denotes the group of nonzero real numbers under multiplication.)
- (c) A factorization of the polynomial $3x^3 + 29x^2 4x 2$ as a product of two polynomials of lower degree in $\mathbb{Q}[x]$.
- (d) A ring R, an ideal $I \subseteq R$, and elements $a \neq b$ of R such that a + I = b + I.
- (e) A polynomial $f(x) \in \mathbb{Q}[x]$ which has no root in \mathbb{Q} , but which is reducible in $\mathbb{Q}[x]$.
- (f) A field with exactly 100 elements.
- (g) An ideal $I \subseteq \mathbb{Z}[x]$ such that $\mathbb{Z}[x]/I$ is isomorphic to $\mathbb{Z}[i]$, the ring of Gaussian integers.
- (h) Two elements of $\mathbb{Z}_{5}[x]$ that are associates, but are not equal.
- (i) A unique factorization domain which is not a principal ideal domain.
- **3.** Short proofs. (22 points = 6 + 8 + 8.)
- (a) If $f: X \to Y$ and $g: Y \to Z$ are set maps such that the composite map $g \circ f: X \to Z$ is injective, show that f is injective.
- (b) Suppose a group G acts on a set X, and let $S = \{\sigma \in G \mid \forall x \in X, \sigma x = x\}$. Show that S is a normal subgroup of G. (You must show both that it is a subgroup and that it is normal.)
- (c) Suppose $P_1 \ge P_2 \ge ... \ge P_n \ge P_{n+1} \ge ...$ is a decreasing sequence of prime ideals. Show that the ideal $I = \bigcap_{n\ge 1} P_n$ is prime. (Here you are to take for granted that I is an ideal, in contrast to the homework problem this is taken from, where you had to prove both that it was an ideal and that it was prime.)