FINAL EXAM Math 113 May 13, 1996 Prof. Wu

- 1. (5%) Prove that for an integer n, $3 \mid n \iff 3 \mid (\text{sum of digits of } n)$.
- 2. (5%) Let $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ be a polynomial with integer coefficients, and let r be a rational number such that f(r) = 0. Show that r has to be an integer and $r \mid a_0$.
 - 3. (5%) Find a minimal polynomial of $\sqrt[3]{1+\sqrt{3}}$ over Q. (Be sure to prove that it is minimal.)
- 4. (5%) Let n be a positive integer ≥ 2 such that $n \mid (b^{n-1}-1)$ for all integers b which are not a multiple of n. What can you say about n?
 - 5. (5%) Do the nonzero elements of Z₁₃ form a cyclic group under multiplication? Give reasons.
 - 6. (10%) Let p be a prime.
- (a) Prove: $p \mid \binom{p}{k}$ for $k = 1, \dots p 1$, where $\binom{p}{k} \equiv \frac{p!}{k!(p-k)!}$. (b) Prove: the mapping $f: \mathbb{Z}_p \to \mathbb{Z}_p$ defined by $f(k) = k^p$ for all $k \in \mathbb{Z}_p$ is a field isomorphism.
- - 7. (10%) Is $x^4 + 2x + 3$ irreducible over \mathbb{R} ? Is it irreducible over \mathbb{Q} ? Give reasons.
- 8. (10%) Let $F \equiv \{a+ib: a, b \in \mathbb{Q}\}$ and let $K \equiv \mathbb{Q}[x]/(x^2+1)\mathbb{Q}[x]$. Show that F is isomorphic to K as fields by defining a map $\varphi: F \to K$ and show that φ has all the requisite properties.
 - 9. (10%) If β is a root of $x^3 x + 1$, find some $p(x) \in \mathbb{Q}[x]$ so that $(\beta^2 2) p(\beta) = 1$.
 - **10.** (10%) Let $\zeta = e^{i2\pi/3}$. Compute $(\mathbb{Q}(\zeta, \sqrt[3]{5}) : \mathbb{Q}(\zeta))$.
 - 11. (25%) (In (a)-(d) below, each part could be done independently.)
- (a) Assume that if p is a prime, then $x^{p-1} + x^{p-2} + \cdots + 1$ is irreducible over \mathbb{Q} . Compute
- $(\mathbb{O}(\cos(2\pi/7) + i\sin(2\pi/7)) : \mathbb{O})$. (Each step should be clearly explained.)
- (b) Suppose the regular 7-gon can be constructed with straightedge and compass. Explain why
- $(\mathbb{Q}(\cos(2\pi/7):\mathbb{Q})=2^k \text{ for some } k\in\mathbb{Z}^+.$
- (c) If $F \equiv \mathbb{Q}(\cos(2\pi/7))$, show that $(F(i\sin(2\pi/7)):F) = 1$ or 2.
- (d) Use (b) and (c) to conclude that if the regular 7-gon can be constructed with straightedge and compass, then $(\mathbb{Q}(\cos(2\pi/7) + i\sin(2\pi/7)) : \mathbb{Q}) = 2^m$ for some $m \in \mathbb{Z}^+$.
- (e) What can you conclude from (a) and (d)? What is your guess concerning the construction of the regular 11-gon, the regular 13-gon, the regular 23-gon, etc.?