## Math 110-1, Linear Algebra Spring 2000, Instructor: I. Novik

## Final Exam

| Name: | <br> |  |  |
|-------|------|--|--|
| SID:  |      |  |  |

This exam is closed book, no notes are allowed. You have 3 hours to complete it.

## GOOD LUCK!

- 1. (16 pts) This part consists of 4 questions. Each question is worth 4 pts. In each question give an example with required properties. You do NOT have to explain your example.
  - (a) A vector space V with two subspaces S and T such that dim  $S = \dim T = 4$ , but dim(S + T) = 6.

(b) A function  $f: \mathbf{R}^2 \to \mathbf{R}$  such that f(ax) = af(x) for all  $a \in \mathbf{R}$  and all  $x \in \mathbf{R}^2$  but f is not linear.

(c) A non-diagonalizable matrix whose characteristic polynomial is  $(3-t)^3.$ 

(d) A normal operator on  $\mathbb{R}^2$  that is not diagonalizable.

- 2. (49 pts) Supply a short proof for each of the following statements.
  - (a) (4 pts) If S,T are invertible linear transformations that commute, then their inverses also commute.

(b) (4 pts) If  $T: V \to V$  is unitary and self-adjoint, then  $T^2 = I$ .

(c) (4 pts) If  $\phi$  is a non-zero functional on an *n*-dimensional vector space, then the nullity of  $\phi$  equals n-1.

(d) (7 pts) If  $T:V\to V$  has the property that  $T^2$  possesses a nonnegative eigenvalue  $\lambda^2$ , then at least one of  $\lambda$  or  $-\lambda$  is an eigenvalue for T.

(Hint: 
$$T^2 - \lambda^2 I = (T + \lambda I)(T - \lambda I)$$
).

(e) (7 pts) Let  $V = \mathbf{R}^+$  be the set of positive real numbers. Define the "sum" of two elements x,y in V to be their product xy (in the usual sense), and define "multiplication of an element x in V by a scalar c" to be  $x^c$ . Prove that V is a vector space over  $\mathbf{R}$  with 1 as the zero element.

(f) (7 pts) Prove that if  $W_1$  and  $W_2$  are subspaces of a finite-dimensional real inner-product space V such that  $\dim W_1 = \dim W_2$ , then there exists an orthogonal transformation T such that  $T(W_1) = W_2$ .

$$A = \begin{pmatrix} 0 & \times \\ 0 & 0 \end{pmatrix}$$

(g) (7 pts) If A is a non-zero, strictly upper-triangular  $n \times n$  matrix (that is,  $A_{ij} = 0$  for all  $1 \le i \le j \le n$ ), then A is not diagonalizable. (Hint: what are the eigenvalues of A?)

(h) (9 pts) Let  $P_m(\mathbf{R})$  be the vector space consisting of all polynomials of degree  $\leq m$  with real coefficients. Suppose that  $p_0, p_1, \ldots, p_m$  are elements of  $P_m(\mathbf{R})$  with the property that  $p_j(1) = 0$  for all j. Prove that the set  $\{p_0, p_1, \ldots, p_m\}$  is linearly dependent in  $P_m(\mathbf{R})$ . (Hint: Do  $p_0, p_1, \ldots, p_m$  generate  $P_m(\mathbf{R})$ ?)

3. (18 pts) Let V be a finite-dimensional vector space. Suppose  $\beta = \{v_1, \ldots, v_n\}$  is a basis for V. Let  $\phi_1, \ldots, \phi_n \in V^*$  be the linear functionals defined by

$$\phi_i(v_j) = \delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

- (a) (7 pts) Prove that for every  $f \in V^*$ ,  $f = \sum_{j=1}^n f(v_j)\phi_j$ .
- (b) (5 pts) Conclude that  $\beta^* = \{\phi_1, \dots, \phi_n\}$  is a basis for  $V^*$ , called the dual basis of  $\beta$ .
- (c) (6 pts) Let  $V = M_{2\times 2}(\mathbf{R})$ , let

$$\beta = \left\{ \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right], \left[\begin{array}{cc} 1 & 1 \\ 0 & 0 \end{array}\right], \left[\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right], \left[\begin{array}{cc} 1 & 1 \\ A & 1 \end{array}\right] \right\}$$

be a basis of V, and let  $\beta^* = \{\phi_1, \phi_2, \phi_3, \phi_4\}$  be the dual basis. Show that  $f(A) = \operatorname{tr}(A)$  is a linear functional on V, and compute the coordinate vector of this linear functional with respect to  $\beta^*$ .

4. (17 pts) Let V be the set of all real sequences  $(x_n)_{n=1}^{\infty}$ . Define the sum of two such sequences and the multiplication by a scalar  $c \in \mathbf{R}$  by

$$(x_n) + (y_n) = (x_n + y_n)$$
 and  $c \cdot (x_n) = (cx_n)$ ,

respectively.

- (a) (5 pts) Prove that V is a vector space over  $\mathbf{R}$ .
- (b) (4 pts) Define  $T: V \to V$  as follows: for  $x = (x_n)_{n=1}^{\infty} \in V$ , let  $T(x) = (a x_n)_{n=1}^{\infty}$ , where  $a = \frac{1}{100} \sum_{i=1}^{100} x_i$ . Prove that T is linear.
- (c) (8 pts) Prove that T has only two eigenvalues  $\lambda = 0$  and  $\lambda = -1$  and determine the eigenvectors belonging to each such  $\lambda$ .