UNIVERSITY OF CALIFORNIA AT BERKELEY

Department of Mechanical Engineering ME134 Automatic Control Systems Fall 2004 (October 5th)

Midterm Exam I

Name:	SOLUTION				SID:
Problem:	1	2	3	Total	
Max. Grade:				100	
Grade:					

Problem 1

Consider Van der Pol's equation for a nonlinear oscillator:

$$\ddot{I} - \mu(1 - I^2)\dot{I} + I = 0$$

This second order nonlinear model describes the current I in an electrical circuit with a nonlinear active element, such as a vacuum tube. It can be expressed as two first order ODEs in state space form:

$$\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ \mu(1 - x_1^2)x_2 - x_1 \end{bmatrix} \tag{1}$$

where $x_1 = I$ and $x_2 = \dot{I}$.

- (a) Find the equilibrium point x_e of Eq. (1).
- (b) Find the linear approximation to Eq. (1) near x_e .
- (c) Determine the stability of the linearized model about x_e , assuming $\mu > 0$ (is the system stable, limitedly stable, or unstable?).

(a)
$$\dot{\chi} = \begin{bmatrix} f_1 \\ f_2 \end{bmatrix}$$
 $f_1 = \chi_2$ $f_2 = \mu (1 - \chi_1^2) \chi_2 - \chi_1$

$$f_1=0 \longrightarrow \chi_{2e}=0$$

$$f_2=0 \longrightarrow \mu(1-\chi_{1e}^2)\chi_{2e}-\chi_{1e}=0 \longrightarrow \chi_{1e}=0$$
 $\chi_{e}=\begin{bmatrix}0\\0\end{bmatrix}$

$$\left(\begin{array}{c} \frac{\partial x}{\partial h} = 0 \end{array}\right)$$

$$\frac{\partial f_1}{\partial x_1} = 1$$

$$\frac{\partial f_2}{\partial x_1} = -2 \mu x_1 x_2 - 1 \qquad \Rightarrow \qquad \frac{\partial f_2}{\partial x_1} = -1$$

$$\frac{\partial f_2}{\partial x_2} = \mu \left(1 - \chi_1^2\right) \longrightarrow \frac{\partial f_2}{\partial x_2}\Big|_{xe} = \mu.$$

(c) eig {
$$A_{LIN}$$
} = roots (det [$s - 1$])

= roots
$$(s^2 - \mu s + 1)$$

$$=\frac{1}{2}\mu + \frac{1}{2}\sqrt{\mu^2 - 4}$$

Since 470, there is always at least 1 reigenvalue with positive real part

: Unstable for all 1000

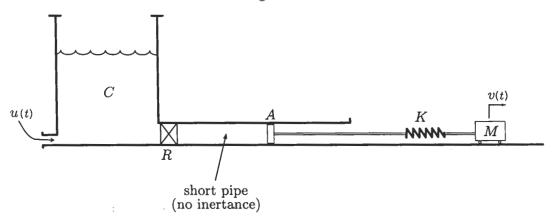
Problem 2

Figure 1 shows a fluid/mechanical system. Power is transformed between the fluid and mechanical sides by an ideal piston, modelled with:

Power in = Power out
$$and$$
 . flow/ A = piston speed

- (a) Write the constitutive relation for each element.
- (b) Identify the independent storage elements. What is the order of the system?
- (c) Put the model in state space form, with v(t) as the output.

Figure 1:



$$\dot{p}_i = \frac{1}{C} (u - q)$$

$$P_1 \xrightarrow{q} P_2$$

$$P_2 q = F v_1$$

$$q = A \cdot v_1$$

$$\dot{F} = K (v_1 - v)$$

$$: \quad \dot{V} = \frac{1}{M} F$$

(b) Storage elements: the tank, the spring, and the mass. Order: 3

$$\begin{cases} \dot{\rho}_{i} = \frac{1}{C} \left(u - q_{i} \right) \\ \dot{F} = K \left(v_{i} - v \right) \\ \dot{V} = \frac{1}{M} F \end{cases}$$

Need to eliminate q, and V, using $\begin{cases} R_1 - R_2 = Rq & \text{(I)} \\ R_2 q = F V, & \text{(II)} \\ q = A V, & \text{(III)} \end{cases}$

$$\begin{cases} P_1 - P_2 = Rq & (x) \\ P_2 q = F V_1 & (a) \\ q = AV_1 & (a) \end{cases}$$

$$\square \to \square : P_2(A \vee_i) = F \vee_i \to P_2 = \frac{1}{A} - \frac{1}{2} F$$

$$\rightarrow \mp : q = \frac{1}{R} P_1 - \frac{1}{R} P_2 = \frac{1}{R} P_1 - \frac{1}{AR} F$$

$$\rightarrow \mathbb{I} \qquad \qquad V_1 = \frac{1}{A} q = \frac{1}{AR} P_1 - \frac{1}{A^2 R} F$$

$$\begin{cases}
\dot{P}_{1} = \frac{1}{C} \left(u - \frac{1}{R} P_{1} + \frac{1}{AR} F \right) \\
\dot{F} = K \left(\frac{1}{AR} P_{1} - \frac{1}{A^{2}R} F - V \right)
\end{cases}
\Rightarrow
\begin{bmatrix}
\dot{P}_{1} = \frac{1}{C} \left(u - \frac{1}{RC} \frac{1}{CAR} O \right) \\
\dot{F} = \frac{1}{RC} \left(\frac{1}{CAR} O \right) \\
\dot{$$

Problem 3

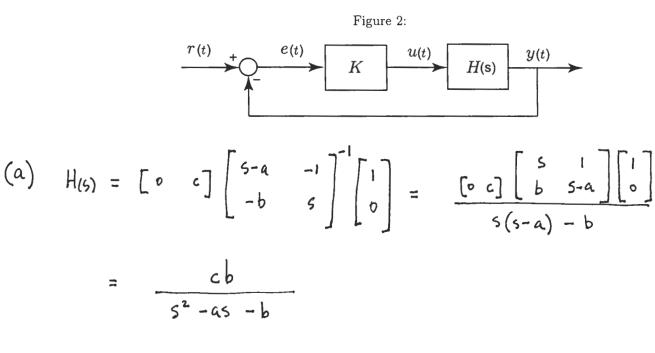
Given the following second order system:

$$\dot{x}(t) = \begin{bmatrix} a & 1 \\ b & 0 \end{bmatrix} x(t) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u(t)$$
$$y(t) = \begin{bmatrix} 0 & c \end{bmatrix} x(t)$$

(a) Find the values of a, b, and c that make the transfer function from u(t) to y(t) equal to:

$$H(s) = \frac{10}{s^2 + 4s + 5}$$

- (b) In Figure 2, find the transfer function from r(t) to y(t).
- (c) Assuming r(t) is a unit step input, and K = 1, find $\lim_{t\to\infty} y(t)$.
- (d) Find the value of K such that the closed-loop damping ratio is $\xi = 0.5$.



(b)
$$E = R - Y$$

 $U = KE$
 $Y = HU = HKE = HK(R - Y)$

$$= \frac{\frac{10 \, \text{K}}{\text{S}^2 + 4 \, \text{S} + 5}}{1 + \frac{10 \, \text{K}}{\text{S}^2 + 4 \, \text{S} + 5}} \, R$$

$$= \frac{10 \text{ K}}{\text{S}^2 + 4\text{S} + 5 + 10 \text{K}} R$$
T.F. from $r \rightarrow y$.

(c)
$$R = \frac{1}{5}$$
.

Is it stable? Check roots of
$$S^2 + 45 + 15$$

$$P = -\frac{4}{2} \pm \frac{1}{2} \sqrt{16 - 4.15} = -2 \pm \sqrt{11}$$
YES.

: We can use the final value theorem:

$$\lim_{t\to\infty} y(t) = \lim_{s\to0} s \cdot Y(s) = \lim_{s\to0} g \cdot \frac{10}{s^2 + 4s + 15} \cdot \frac{1}{g} = \frac{10}{15} = \frac{2}{3}$$

(d)
$$\int \omega_n^2 = 5 + 10k$$

 $(23\omega_n = 4) \longrightarrow 43^2 \omega_n^2 = 16$

$$3^2(5+10k)=84$$

$$5 + 10 K = \frac{4}{3} = 16 \qquad K = \frac{16 - 5}{10} = \frac{11}{10}$$