MIDTERM MATH 12A SPRING 2000

[1] 10 points

Solve

$$y''(t) + y(t) = \sin(t)$$
 ; $y(0) = 0, y'(0) = 0.$

[2] 5 points

Find the Laplace transform of

$$f(t) = \left\{ egin{array}{ll} 0 & ext{if } 0 \leq t < 2 \ 3e^{-(t-2)} & ext{if } 2 \leq t \end{array}
ight. .$$

[3] 5 × 2 points

Let f(x) and g(x) be absolutely integrable functions on \mathbb{R} . Let $\mathcal{F}[f]$ denote the Fourier transform of f(x).

- (i) What formula defines the Fourier transform of f(x)?
- (ii) What formula defines $f \star g$?
- (iii) Express $\mathcal{F}[f'(x)]$ in terms of $\mathcal{F}[f]$.
- (iv) Express $\mathcal{F}[f \star g]$ in terms of $\mathcal{F}[f]$ and $\mathcal{F}[g]$.
- (v) Express f in terms of $\mathcal{F}[f]$.

[4] 5 points

Evaluate

$$\oint_C \frac{dz}{z},$$

where C is the circle of radius 2 centered at 0, oriented counterclockwise.

[5] 10 points

Let $z = \sqrt{3} - i$.

(i) Write z as $re^{i\theta}$, i.e., find r and θ .

(ii) What is z^3 ?

(iii) What are $\Re(1/z)$ and $\Im(1/z)$, the real and imaginary parts of 1/z?

(iv) What is $\Im(\overline{i}\overline{z})$?

[6] 5 points

Find the radius of convergence of $\sum\limits_{n=1}^{\infty} 2nz^{2n-1}$.

[7] 5 points

What does $\sum_{n=1}^{\infty} 2nz^{2n-1}$ equal where it converges?

[8] 10 points

Let $f: \mathbb{C} \longrightarrow \mathbb{C}$ be analytic, and let $u(x, y) = \Re(f(x + iy))$.

Show that

$$\frac{\partial^2}{\partial x^2}u(x,y) + \frac{\partial^2}{\partial y^2}u(x,y) = 0.$$

 $[Hint: \ Use \ the \ Cauchy-Riemann \ equations]$

- [9] Statement of definitions 2×5 points
- (i) Let S be a set of real numbers. Carefully define $\sup S$, the supremum (or least upper bound) of S.

(ii) Let $f: D \longrightarrow \mathbb{C}$ be a complex-valued function on a domain D, and for each $n \in \mathbb{N}$, let $f_n: D \longrightarrow \mathbb{C}$. By definition, $\{f_n\}$ converges uniformly to f (on D) if and only if . .

[10] 10 points

Solve Schrödinger's equation on $\mathbb R$ using the Fourier Integral:

$$i\frac{\partial}{\partial t}\psi(x,t) = -\frac{\partial^2}{\partial x^2}\psi(x,t)$$

 $\psi(x,0) = f(x).$

[11] Proof problem 20 points

Let $f:D\longrightarrow \mathbb{C}$ be defined on an open domain D of the complex plane, and let w be a point in D. Recall that

$$\lim_{z\to w}f(z)=c,$$

if and only if the following condition is met: For every $\epsilon > 0$, there exists $\delta > 0$ such that $|f(z) - c| < \epsilon$ if $|z - w| < \delta$.

Prove one direction — your choice, either "if" or "only if" — of the following theorem. For extra credit, prove both directions.

Theorem:

$$\lim_{z \to w} f(z) = c$$

if and only if $\{f(z_n)\}$ converges to c whenever $\{z_n\}$ converges to w.