UCB Math 1B, Fall 2009: Midterm 2, Solutions

Prof. Persson, November 9, 2009

Name:

SID:

Section: Circle your discussion section below:
$\left.\begin{array}{llllll}\text { Sec } & \text { Time } & \text { Room } & \text { GSI } & & 3 \mathrm{a}\end{array}\right) / 5$

Other/none, explain:

Instructions:

- One double-sided sheet of notes, no books, no calculators.
- Exam time 50 minutes, do all of the problems.
- You must justify your answers for full credit.
- Write your answers in the space below each problem.
- If you need more space, use reverse side or scratch pages.

Indicate clearly where to find your answers.

1. (5 points) Find the interval of convergence, including determination of the convergence at the end points, for the power series below.

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{x^{n}}{n \cdot 3^{2 n}}
$$

Solution: Ratio test:

$$
\begin{aligned}
&\left|\frac{a_{n+1}}{a_{n}}\right|=\left|\frac{x^{n+1}}{(n+1) \cdot 9^{n+1}} \cdot \frac{n \cdot 9^{n}}{x^{n}}\right|=\frac{|x|}{9} \cdot \frac{n}{n+1} \rightarrow \frac{|x|}{9} \text { as } n \rightarrow \infty \\
& \frac{|x|}{9}<1 \Longleftrightarrow|x|<9 \\
& x=9: a_{n}=\frac{(-1)^{n}}{n} \Longrightarrow \text { Convergent by the alternating series test } \\
& x=-9: a_{n}\left.=\frac{1}{n} \Longrightarrow \text { Divergent (p-series with } p=1\right) \\
& \Longrightarrow I=(-9,9]
\end{aligned}
$$

2. (5 points) Show that the series

$$
y=\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{1 \cdot 3 \cdot 5 \cdots \cdot(2 n+1)}
$$

is a solution of the differential equation

$$
y^{\prime}=1+x y .
$$

Solution:

$$
\begin{aligned}
x y & =\sum_{n=0}^{\infty} \frac{x^{2 n+2}}{1 \cdot 3 \cdot 5 \cdots \cdots(2 n+1)} \\
y^{\prime} & =\sum_{n=0}^{\infty} \frac{(2 n+1) x^{2 n}}{1 \cdot 3 \cdot 5 \cdots \cdots(2 n+1)}=\sum_{n=0}^{\infty} \frac{x^{2 n}}{1 \cdot 3 \cdot 5 \cdots \cdots(2 n-1)} \\
& =1+\sum_{n=0}^{\infty} \frac{x^{2 n+2}}{1 \cdot 3 \cdot 5 \cdots \cdots(2 n+1)} \\
& \Longrightarrow y^{\prime}=1+x y
\end{aligned}
$$

3. Determine if the series below are absolutely convergent (AC), conditionally convergent (CC), or divergent (D).
a) $\left(5\right.$ points) $\sum_{n=0}^{\infty}\left(\frac{2-3 \sin n}{6}\right)^{n}$

Solution: Check for absolute convergence by bounding the terms:

$$
\left|a_{n}\right|=\left|\frac{2-3 \sin n}{6}\right|^{n} \leq\left(\frac{5}{6}\right)^{n}
$$

Compare with the convergent geometric series $\sum_{n=0}^{\infty}\left(\frac{5}{6}\right)^{n}$
\Longrightarrow Series is absolutely convergent (AC).
b) (5 points) $\sum_{n=1}^{\infty}(-1)^{n}\left[\sin \left(1 / n^{2}\right)\right]^{1 / 3}$

Solution: Convergent by the alternating series test, $\operatorname{since} \sin \left(1 / n^{2}\right)$ is decreasing for $n \geq 1$ and $\sin \left(1 / n^{2}\right) \rightarrow \sin 0=0$ as $n \rightarrow \infty$.
Since $\left[\sin \left(1 / n^{2}\right)\right]^{1 / 3} \approx\left(1 / n^{2}\right)^{1 / 3}=1 / n^{2 / 3}$, use the limit comparison test with $b_{n}=1 / n^{2 / 3}$ to check for absolute convergence:
$\frac{\left|a_{n}\right|}{b_{n}}=\frac{\left[\sin \left(1 / n^{2}\right)\right]^{1 / 3}}{1 / n^{2 / 3}}=\left(\frac{\frac{1}{n^{2}}-\frac{1}{n^{6} \cdot 3!}+\frac{1}{n^{10} \cdot 5!}-\cdots}{\frac{1}{n^{2}}}\right)^{1 / 3} \rightarrow 1$ as $n \rightarrow \infty$
Therefore, the absolute series is divergent, since $\sum_{n=1}^{\infty} 1 / n^{2 / 3}$ is divergent (p -series with $p=2 / 3$)
\Longrightarrow Series is conditionally convergent (CC).
4. Find the sum of the series below.
a) $\left(5\right.$ points) $\sum_{n=1}^{\infty} \frac{2}{n(n+2)}$

Solution: Write the rational function as a partial fraction:

$$
\frac{2}{n(n+2)}=\frac{1}{n}-\frac{1}{n+2}
$$

which gives the partial sum

$$
\begin{aligned}
s_{n}= & \frac{1}{1}-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+\cdots \\
& +\frac{1}{n-2}-\frac{1}{n}+\frac{1}{n-1}-\frac{1}{n+1}+\frac{1}{n}-\frac{1}{n+2} \\
= & 1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2} \rightarrow \frac{3}{2} \text { as } n \rightarrow \infty
\end{aligned}
$$

b) $(5$ points $) \sum_{n=0}^{\infty}\left(\frac{1}{1+3 \cdot(-1)^{n}}\right)^{n}$

Solution: Split the series:

$$
\begin{gathered}
n \text { even }: a_{n}=\frac{1}{4^{n}} \\
n \text { odd }: a_{n}=\frac{1}{(-2)^{n}}=-\frac{1}{2^{n}} \\
\sum_{n=0}^{\infty} a_{n}=\sum_{n=0}^{\infty}\left[\frac{1}{4^{2 n}}-\frac{1}{2^{2 n+1}}\right]=\sum_{n=0}^{\infty}\left[\frac{1}{16^{n}}-\frac{1}{2} \cdot \frac{1}{4^{n}}\right] \\
=\frac{1}{1-1 / 16}-\frac{1}{2} \cdot \frac{1}{1-1 / 4}=\frac{16}{15}-\frac{2}{3}=\frac{2}{5}
\end{gathered}
$$

5. (5 points) Find all x that satisfy the equation

$$
\sum_{n=0}^{\infty}(-1)^{n}(n+1) x^{2 n+2}=\frac{2}{9}
$$

Solution:

$$
\begin{aligned}
& \frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n} \quad|x|<1 \\
& \frac{1}{(1-x)^{2}}=\sum_{n=1}^{\infty} n x^{n-1}=\sum_{n=0}^{\infty}(n+1) x^{n} \quad|x|<1 \\
& \frac{x^{2}}{\left(1+x^{2}\right)^{2}}=\sum_{n=0}^{\infty}(-1)^{n}(n+1) x^{2 n+2} \quad\left|x^{2}\right|<1 \\
& \frac{x^{2}}{\left(1+x^{2}\right)^{2}}=\frac{2}{9} \Longrightarrow 9 x^{2}=2\left(1+2 x^{2}+x^{4}\right) \Longrightarrow x^{4}-\frac{5}{2} x^{2}+1=0 \\
& \Longrightarrow x^{2}=\frac{5}{4} \pm \sqrt{\frac{25}{16}-1}=\frac{5 \pm 3}{4}=\frac{1}{2}, 2
\end{aligned}
$$

But the series is only convergent for $\left|x^{2}\right|<1$, and therefore

$$
x= \pm \frac{1}{\sqrt{2}}
$$

