
(30 Points)   
1.  Consider a spherical wall (or shell) that extends from r = ri to r = ro. The inner 
surface temperature is 500 K and the outer surface temperature is 400 K.  Determine the 
heat flux (units of W/m2) at  r = ( ri + ro )/2.                                                                                                       
(If you refer to an eq. or fig. in the text or notes give the page number) 

T(ri) = 500 K

T(ro) = 400 K

 
 
First find q, then find q’’.  Begin with resistive network: 

 
For spherical geometries (equation 3.36 on page 122): 
  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

oi
condth rrk

R 11
4
1

, π
 

 
H
 

eat transfer resistance equation: 
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ivide q by area of sphere at r = (ri + ro)/2 to get q’’: 
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Alternatively, Table 3.3 (pg. 126), under heat flux and spherical wall will produce the 
same result. 

Sphere Cross-Section 
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2. Consider an aluminum plate that extends from x = 0 to x = L = 1 m and contains a 
heat source.  The surroundings are at 300 K.  The temperature distribution is given by 
(units of K) 410 + 50x – 40x2.  Determine the numerical value of the convection heat 
transfer coefficient at x = 0.   
(If you refer to an equation or figure in the text or notes, give the page number) 
 

  
Use temperature distribution to find T(x = 0) = 410 K, thus heat transfer is to the left.  At 
the left boundary the heat rate balance is: 
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t the left boundary (with q defined to the left), the heat transfer rates can be found as: 

( )∞−=′′ TThq sconv  
 

0==′′ xcond dx
dTkq  

 
Setting these two quantities equal and evaluating for h gives: 
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x = 0 

kAl = 237  @ T = 300 K  {Table A.1, page 229} 
 

G
 

iven: 

T (x) = 410 + 50x – 40x2 

T∞ = 300 K 
 

T(x) 

h, T∞ 

x = 1 

q = const qconv qcond 

x = 0 



(60) 
3. An infinitely long fin contains a heat source from its base at x = 0 to x = 3 m.  The 
heat source is a constant and generates 5 W/m.  The base of the fin (at x = 0) is insulated.  
Determine (a) the heat loss from the fin to the surroundings (the surroundings are at 300 
K) and (b) the temperature of the fin at x = 4 m. 
 

h, T∞ 

x ∞ →Insulated 

 
 
A)  

At steady state, the cumulative heat loss must equal the heat generation rate.  That 

is, the total heat loss, qloss is: 
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B) 
 This part requires the solution of the temperature profile in both regions.  Set up a 

control volume for each of the two regions. 
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Let 
kA
hPm

kA
hPm == ,2 , where P is perimeter and A is area of cross section. 

    
Set up temperature profile in both regions: 
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(drop sinh(mx) term because symmetric at x = 0 due to insulated BC) 
 

( ) ∞+−= TmxBTII exp  
 (drop exp(mx) term because must be bounded as x tends toward ∞) 
 

A
 

pply temperature continuity at x = 3: 
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pply heat rate continuity at x = 3: 

 ( ) ( )mmAB
dx

dT
dx
dT

x
II

x
I 3exp3sinh33 −=⇒= ==  

 
Combining these equations to solve for A gives: 
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ubstituting A back into solve B gives: 
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ecast the temperature solution in region II, TII: 
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olve for T(x = 4) gives: 
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