1. Consider a spherical wall (or shell) that extends from $r=r_{i}$ to $r=r_{0}$. The inner surface temperature is 500 K and the outer surface temperature is 400 K . Determine the heat flux (units of W / m^{2}) at $r=\left(r_{i}+r_{0}\right) / 2$.
(If you refer to an eq. or fig. in the text or notes give the page number)

First find q, then find q '’. Begin with resistive network:

For spherical geometries (equation 3.36 on page 122):

$$
R_{t h, c o n d}=\frac{1}{4 \pi k}\left(\frac{1}{r_{i}}-\frac{1}{r_{o}}\right)
$$

Heat transfer resistance equation:

$$
\Delta T=q R \Rightarrow q=\frac{\Delta T}{R}
$$

$\Delta T=500-400=100 K$, then

$$
q=\frac{100}{4 \pi k\left(\frac{1}{r_{i}}-\frac{1}{r_{o}}\right)}=\frac{400 \pi k}{\left(\frac{1}{r_{i}}-\frac{1}{r_{o}}\right)}
$$

Divide q by area of sphere at $r=\left(r_{i}+r_{o}\right) / 2$ to get $q^{\prime \prime}$:

$$
q^{\prime \prime}=\frac{q}{A_{s p h}}=\frac{q}{4 \pi\left(\frac{r_{i}+r_{o}}{2}\right)^{2}}=\frac{400 k}{\left(\frac{1}{r_{i}}-\frac{1}{r_{o}}\right)\left(r_{i}+r_{o}\right)^{2}}
$$

Alternatively, Table 3.3 (pg. 126), under heat flux and spherical wall will produce the same result.
2. Consider an aluminum plate that extends from $\mathrm{x}=0$ to $\mathrm{x}=\mathrm{L}=1 \mathrm{~m}$ and contains a heat source. The surroundings are at 300 K . The temperature distribution is given by (units of K) $410+50 x-40 x^{2}$. Determine the numerical value of the convection heat transfer coefficient at $x=0$.
(If you refer to an equation or figure in the text or notes, give the page number)
$\mathrm{k}_{\mathrm{Al}}=237 @ \mathrm{~T}=300 \mathrm{~K}$ \{Table A.1, page 229\}

Given:

$$
\begin{aligned}
& T(x)=410+50 x-40 x^{2} \\
& T_{\infty}=300 K
\end{aligned}
$$

Use temperature distribution to find $T(x=0)=410 \mathrm{~K}$, thus heat transfer is to the left. At the left boundary the heat rate balance is:

At the left boundary (with q defined to the left), the heat transfer rates can be found as:

$$
\begin{aligned}
& q_{c o n v}^{\prime \prime}=h\left(T_{s}-T_{\infty}\right) \\
& q_{\text {cond }}^{\prime \prime}=\left.k \frac{d T}{d x}\right|_{x=0}
\end{aligned}
$$

Setting these two quantities equal and evaluating for h gives:

$$
h=\frac{\left.k \frac{d T}{d x}\right|_{x=0}}{T_{s}-T_{\infty}}=\frac{237 \frac{\mathrm{~W}}{m K} 50 \frac{K}{m}}{110 \mathrm{~K}}=107.7 \frac{\mathrm{~W}}{\mathrm{~m}^{2} K}
$$

(60)
3. An infinitely long fin contains a heat source from its base at $x=0$ to $x=3 \mathrm{~m}$. The heat source is a constant and generates $5 \mathrm{~W} / \mathrm{m}$. The base of the fin (at $\mathrm{x}=0$) is insulated. Determine (a) the heat loss from the fin to the surroundings (the surroundings are at 300 K) and (b) the temperature of the fin at $\mathrm{x}=4 \mathrm{~m}$.

A)

At steady state, the cumulative heat loss must equal the heat generation rate. That is, the total heat loss, $\mathrm{q}_{\text {loss }}$ is:

$$
q_{\text {loss }}=\dot{q}_{g e n}^{\prime} L=5 \frac{\mathrm{~W}}{\mathrm{~m}} 3 \mathrm{~m}=15 \mathrm{~W}
$$

B)

This part requires the solution of the temperature profile in both regions. Set up a control volume for each of the two regions.

$$
\mathrm{q}_{\mathrm{x}}-\mathrm{q}_{\mathrm{x}+\mathrm{dx}}-\mathrm{dq}_{\mathrm{conv}}+\mathrm{dq}_{\mathrm{gen}}=0
$$

$$
-\frac{d}{d x}\left(q_{x}\right) d x-d q_{c o n v}+d q_{g e n}=0
$$

Region II (T_{II})

$$
\begin{gathered}
\mathrm{q}_{\mathrm{x}}-\mathrm{q}_{\mathrm{x}+\mathrm{dx}}-\mathrm{dq}_{\mathrm{conv}}=0 \\
-\frac{d}{d x}\left(q_{x}\right) d x-d q_{c o n v}=0
\end{gathered}
$$

$$
\begin{array}{ll}
\frac{d^{2} T_{I}}{d x^{2}}-\frac{h P}{k A}\left(T_{I}-T_{\infty}\right)+\frac{\dot{q}_{g e n}^{\prime}}{k A}=0 & \frac{d^{2} T_{I I}}{d x^{2}}-\frac{h P}{k A}\left(T_{I I}-T_{\infty}\right)=0 \\
\text { Let } \theta_{\mathrm{I}}=\mathrm{T}_{\mathrm{I}}-\mathrm{T}_{\infty}-\frac{\dot{q}_{g e n}^{\prime}}{h P}, \frac{d \theta_{I}}{d x}=\frac{d T_{I}}{d x} & \text { Let } \theta_{I I}=\mathrm{T}_{I I}-\mathrm{T}_{\infty}, \frac{d \theta_{I I}}{d x}=\frac{d T_{I I}}{d x}
\end{array}
$$

Let $m^{2}=\frac{h P}{k A}, m=\sqrt{\frac{h P}{k A}}$, where P is perimeter and A is area of cross section.
Set up temperature profile in both regions:

$$
T_{I}=A \cosh (m x)+T_{\infty}+\frac{\dot{q}_{g e n}^{\prime}}{h P}
$$

(drop $\sinh (m x)$ term because symmetric at $x=0$ due to insulated $B C$)

$$
T_{I I}=B \exp (-m x)+T_{\infty}
$$

(drop $\exp (m x)$ term because must be bounded as x tends toward ∞)
Apply temperature continuity at $\mathrm{x}=3$:

$$
T_{I}(x=3)=T_{I I}(x=3) \Rightarrow B=\exp (3 m)\left[A \cosh (3 m)+\frac{\dot{q}_{g e n}^{\prime}}{h P}\right]
$$

Apply heat rate continuity at $\mathrm{x}=3$:

$$
\left.\frac{d T_{I}}{d x}\right|_{x=3}=\left.\frac{d T_{I I}}{d x}\right|_{x=3} \Rightarrow B=-A \sinh (3 m) \exp (3 m)
$$

Combining these equations to solve for A gives:

$$
A=\frac{-\dot{q}_{g e n}^{\prime}}{h P} \exp (-3 m)
$$

Substituting A back into solve B gives:

$$
B=\frac{\dot{q}_{g e n}^{\prime}}{h P} \sinh (3 m)
$$

Recast the temperature solution in region II, T_{II} :

$$
T_{I I}=T_{\infty}+\frac{\dot{q}_{g e n}^{\prime}}{h P} \sinh (3 m) \exp (-m x), \quad\{x>=3\}
$$

Solve for $\mathrm{T}(\mathrm{x}=4)$ gives:

$$
T(x=4)=T_{\infty}+\frac{\dot{q}_{g e n}^{\prime}}{h P} \sinh (3 m) \exp (-4 m x)
$$

