UNIVERSITY OF CALIFORNIA
 College of Engineering
 Departments of Mechanical Engineering and Materials Science \& Engineering

Prof. Ritchie

C-ME 124/C-MSE 113
Mechanical Behavior of Materials
Midtarm Fram \#1 Snlıtinnc

The stresses in the spherical vessel can be found by establishing equilibrium for a section of the sphere as shown above:
$P \pi r^{2}=\sigma_{z z} 2 \pi r t, \sigma_{z z}=\operatorname{Pr} / 2 t$
by symmetry $\sigma_{\theta \theta}=\sigma_{z z}=\operatorname{Pr} / 2 t$
For thin walled pressure vessels $\sigma_{r r}=0$

1. What internal pressure will cause yielding in the 5 mm thick walls if the vessel is made from a carbon steel(uniaxial tensile properties: $\mathrm{E}=210 \mathrm{GPa}$, $\left.\sigma_{y}=450 \mathrm{MPa}, \sigma_{u}=560 \mathrm{MPa}\right)$?

Using the Tresca Criterion:
$\tau_{\text {max }}=\tau_{y}=450 / 2=225 M P a$
i.e.yielding condition

Also $\tau_{\max }=\sigma_{\theta \theta} / 2=\operatorname{Pr} / 4 t$
$P_{\text {yield }}=4 t \tau_{\text {max }} / r=4.5 \mathrm{MPa}$
Using the Von Mises Criterion:
$\sigma_{y}=\left[0.5\left[\left(\sigma_{11}-\sigma_{22}\right)^{2}+\left(\sigma_{22}-\sigma_{33}\right)^{2}+\left(\sigma_{33}-\sigma_{11}\right)^{2}\right]+3\left(\sigma_{12}+\sigma_{23}+\sigma_{31}\right)\right]^{1 / 2}$
$\sigma_{y}=\operatorname{Pr} / 2 t$
$P_{\text {yield }}=2 t \sigma_{y} / r=4.5 \mathrm{MPa}$
2. What are the principal stresses and the maximum shear stress at the maximum operating pressure of 1800 kPa ?
$\sigma_{\theta \theta}=\sigma_{z z}=\operatorname{Pr} / 2 t=180 \mathrm{MPa}$
$\sigma_{r r}=0$
$\tau_{\max }=\sigma_{\theta \theta} / 2=90 M P a$
3. What is the factor of safety for the vessel(compare the maximum operating and yielding pressures)?
Factor of Safety $=P_{\text {yield }} / P_{o p}=4.5 \mathrm{MPa} / 1800 k P a=2.5$

Problem $2 A_{s}=A_{h}$ gives $r_{s}=1.5 "$
Torsional Stiffness is given by:
$T / \phi=G J / L$
$\left(T_{s} / \phi_{s}\right) /\left(T_{h} / \phi_{h}\right)=J_{s} / J_{h}$ as $G_{s}=G_{h}$ and $L_{s}=L_{h}$
$(T / \phi)_{s} /(T / \phi)_{h}=\left(\pi(1.5)^{4} / 2\right) /\left[\pi\left(2.5^{4}-2^{4}\right) / 2\right]=0.219$
It is therefore quite clear why automobile manufacturers have employed hollow driveshafts over the years!

Problem 3

Force Equilibrium gives:
$F_{11}=\int \sigma_{11} d A .=0$
Moment Equilibrium gives:
$M_{13}=F\left(L-x_{1}\right)=-\int \sigma_{11} x_{2} d A .=0$

Let the neutral axis be located at \bar{x}_{2} from the geometric axis $\left(x_{2}=0\right)$ $\epsilon_{11}=-\left(x_{2}-\bar{x}_{2}\right) / R$, where R is the radius of curvature.
$F_{11}=\int \sigma_{11} d A=0=\int\left[-E\left(x_{2}-\bar{x}_{2}\right) b / R\right] d x_{2}=\int_{-h / 2}^{2 h / 5}\left[-E_{1}\left(x_{2}-\bar{x}_{2}\right) b / R\right] d x_{2}+$ $\int_{2 h / 5}^{h / 2}\left[-E_{2}\left(x_{2}-\bar{x}_{2}\right) b / R\right] d x_{2}$
$0=E_{1}\left[4 / 50 h^{2}-2 / 5 h \bar{x}_{2}-1 / 8 h^{2}-1 / 2 h \bar{x}_{2}\right]+E_{2}\left[1 / 8 h^{2}-1 / 2 h \bar{x}_{2}-4 / 50 h^{2}+\right.$ $2 / 5 h \bar{x}_{2}$]
$0=E_{1}\left(4 / 50 h^{2}-1 / 8 h^{2}\right)+E_{2}\left(1 / 8 h^{2}-4 / 50 h^{2}\right)-\bar{x}_{2}\left[E_{1}(2 / 5 h+1 / 2 h)+E_{2}(1 / 2 h-\right.$ $2 / 5 h)$]
$\bar{x}_{2}=\left[0.045 h\left(E_{2}-E_{1}\right)\right] /\left(0.9 E_{1}+0.1 E_{2}\right)$
$\bar{x}_{2}=-1.918 \mathrm{~mm}$
i.e.the neutral axis is located 1.918 mm below the geometric axis.

Using the Moment Equilibrium equation:
$M_{13}=-\int \sigma_{11} x_{2} d A=-\int\left[-E\left(x_{2}-\bar{x}_{2}\right) x_{2} b / R\right] d x_{2}=F\left(L-x_{1}\right)$
$E_{1} b / R \int_{-h / 2}^{2 h / 5}\left(x_{2}^{2}-x_{2} \bar{x}_{2}\right) d x_{2}+E_{2} b / R \int_{2 h / 5}^{h / 2}\left(x_{2}^{2}-x_{2} \bar{x}_{2}\right) d x_{2}=F\left(L-x_{1}\right)$
$b / R\left[E_{1}\left(8 / 375 h^{3}-4 / 50 h^{2} \bar{x}_{2}+1 / 24 h^{3}+1 / 8 h^{2} \bar{x}_{2}\right)+E_{2}\left(1 / 24 h^{3}-1 / 8 h^{2} \bar{x}_{2}-\right.\right.$ $\left.\left.8 / 375 h^{3}+4 / 50 h^{2} \bar{x}_{2}\right)\right]=F\left(L-x_{1}\right)$

Plugging in $E_{1}=210 G P a, E_{2}=45 G P a, h=0.05 m, \bar{x}_{2}=-1.918 \mathrm{~mm}, b=$ $0.025 m$ we get:

$$
\frac{43230}{R}=F\left(L-x_{1}\right)
$$

Recall that $\frac{1}{R}=\frac{\partial^{2} u}{\partial x_{1}^{2}}$, where u is the deflection of the beam.
Integrating once we get:
$\frac{\partial u}{\partial x_{1}}=\frac{F}{43230}\left(L x_{1}-\frac{x_{1}^{2}}{2}+C_{1}\right)$

Boundary Condition:
$\frac{\partial u}{\partial x_{1}}=0 @ x_{1}=0$ gives $C_{1}=0$
Integrating once again:
$u=\frac{F}{43230}\left(\frac{L x_{1}^{2}}{2}-\frac{x_{1}^{3}}{6}+C_{2}\right)$
Boundary Condition:
$u=0 @ x_{1}=0$ gives $C_{2}=0$
Maximum Deflection $u_{\text {max }}$ occurs at $x_{1}=L$
$u_{\max }=\frac{F L^{3}}{129690}$

If $u_{\max }=3 \mathrm{~mm}$ at $L=55 \mathrm{~cm}$ then:
$F=\frac{129690(0.003)}{0.55^{3}}=2338.5 \mathrm{~N}$

