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(a) Since the direction of car A is constant, a coordinate system attached to A will only be 
translating. In the vector equation 

ABAB /vvv +=  
only the vector  is not known. Either from a graphical solution or trigonometry, BA /v
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With an additional application of the law of cosines, 
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In a similar fashion, 
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Observe that 
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Thus 
33.3=Ba  m/s2
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Either from a graphical solution or trigonometry, 
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(b) A coordinate system attached to B is a rotating system. For exampl
coordinates attached to B with the y-axis aligned with the velocity of B
its direction. Thus the acceleration of car A as observed from car B is n
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Problem 2. 
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(a) Let  be the tension in the upper string and  tension in the lower string. It is obvious that 

. A force balance on each mass gives 
1T 2T
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21 44 qmTmg &&=−       (1) 
)( 312 qqmTmg &&&& +=−       (2) 

)(33 412 qqmTmg &&&& +=−      (3) 
Observe that  and . It follows that the above three equations involve only three 
unknowns ,  and . Solution yields 
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(b) Since the masses m and 3m connected to the lower pulley are in motion, forces in the system 
are not in equilibrium. The tension in the upper string is 
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Thus the mass 4m has a downward acceleration even when the total mass on each side of the 
upper pulley is the same. 
(c) Velocity of mass 4m after 2 s is directed downward and is equal to 
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Problem 3. 
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(a) Let the rope break in position α=θ . Before the rope breaks, the bag travels in a circle of 
radius l. In any position , α≤θ
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From kinematics and equation (1), 
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When , . It follows from equation (2) that α=θ mgT 2=
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(b) Set up a rectangular system with origin at A. When the rope breaks, the position of the bag is 
)667.6,546.2()sin,cos(),( 00 −=α−α−= lllyx  

In that position, 431.11sin2 =α= glv  and the distance to fall before reaching the level C is 
333.23667.60 =−=− hyh . Along the y-direction, 
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Along the x-direction, 
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Thus the horizontal distance of C from A is 82.1355.227.1127.11 0 =+=+ x m 
 


