Problem 1.

(a) Since the direction of car A is constant, a coordinate system attached to A will only be translating. In the vector equation

$$
\mathbf{v}_{B}=\mathbf{v}_{A}+\mathbf{v}_{B / A}
$$

only the vector $\mathbf{v}_{A / B}$ is not known. Either from a graphical solution or trigonometry,

$$
\begin{aligned}
& v_{B / A}^{2}=v_{B}^{2}+v_{A}^{2}-2 v_{B} v_{A} \cos 30^{\circ}=324+144-2(18)(12) \cos 30^{\circ} \\
\Rightarrow \quad & v_{B / A}=9.69 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

With an additional application of the law of cosines,

$$
\theta=21.74^{\circ}
$$

In a similar fashion,

$$
\mathbf{a}_{B}=\mathbf{a}_{A}+\mathbf{a}_{B / A}
$$

Observe that

$$
\begin{aligned}
& \left(a_{B}\right)_{t}=3 \mathrm{~m} / \mathrm{s}^{2} \\
& \left(a_{B}\right)_{n}=\frac{v_{B}^{2}}{\rho}=\frac{144}{100}=1.44 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Thus

$$
a_{B}=3.33 \mathrm{~m} / \mathrm{s}^{2}
$$

Either from a graphical solution or trigonometry,

$$
\begin{aligned}
& a_{B / A}=5.32 \mathrm{~m} / \mathrm{s}^{2} \\
& \phi=62.72^{\circ}
\end{aligned}
$$

(b) A coordinate system attached to B is a rotating system. For example, a set of rectangular coordinates attached to B with the y-axis aligned with the velocity of B is continuously changing its direction. Thus the acceleration of car A as observed from car B is not equal to $-\mathbf{a}_{B / A}$.

Problem 2.

(a) Let T_{1} be the tension in the upper string and T_{2} tension in the lower string. It is obvious that $T_{1}=2 T_{2}$. A force balance on each mass gives

$$
\begin{align*}
& 4 m g-T_{1}=4 m \ddot{q}_{2} \tag{1}\\
& m g-T_{2}=m\left(\ddot{q}_{1}+\ddot{q}_{3}\right) \tag{2}\\
& 3 m g-T_{2}=3 m\left(\ddot{q}_{1}+\ddot{q}_{4}\right) \tag{3}
\end{align*}
$$

Observe that $\ddot{q}_{1}=-\ddot{q}_{2}$ and $\ddot{q}_{3}=-\ddot{q}_{4}$. It follows that the above three equations involve only three unknowns $\ddot{q}_{2}, \ddot{q}_{3}$ and T_{2}. Solution yields

$$
\ddot{q}_{2}=\frac{1}{7} g=1.40 \mathrm{~m} / \mathrm{s}^{2}
$$

(b) Since the masses m and $3 m$ connected to the lower pulley are in motion, forces in the system are not in equilibrium. The tension in the upper string is

$$
T_{1}=4 m g-4 m \ddot{q}_{2}=\frac{24}{7} m g<4 m g
$$

Thus the mass $4 m$ has a downward acceleration even when the total mass on each side of the upper pulley is the same.
(c) Velocity of mass $4 m$ after 2 s is directed downward and is equal to

$$
v=v_{0}+a t=\frac{2}{7} g=2.80 \mathrm{~m} / \mathrm{s}
$$

Problem 3.

(a) Let the rope break in position $\theta=\alpha$. Before the rope breaks, the bag travels in a circle of radius l. In any position $\theta \leq \alpha$,

$$
\begin{align*}
& \sum F_{t}=m a_{t} \quad \Rightarrow \quad m g \cos \theta=m a_{t} \quad \Rightarrow \quad \dot{v}=g \cos \theta \tag{1}\\
& \sum F_{n}=m a_{n} \quad \Rightarrow \quad T-m g \sin \theta=m \frac{v^{2}}{l} \tag{2}
\end{align*}
$$

From kinematics and equation (1),

$$
\begin{align*}
\dot{v}=\frac{d v}{d \theta} \dot{\theta}=\frac{d v}{d \theta} \frac{\dot{\theta}}{l}=\frac{v d v}{l d \theta}=g \cos \theta \quad & \Rightarrow \quad \int_{0}^{v} v d v=\int_{0}^{\theta} g \cos \theta l d \theta \\
& \Rightarrow \quad v^{2}=2 g l \sin \theta \tag{3}
\end{align*}
$$

When $\theta=\alpha, T=2 m g$. It follows from equation (2) that

$$
2 m g-m g \sin \alpha=m \frac{2 g l \sin \alpha}{l} \quad \Rightarrow \quad \alpha=\sin ^{-1} \frac{2}{3}=41.81^{\circ}
$$

(b) Set up a rectangular system with origin at A. When the rope breaks, the position of the bag is

$$
\left(x_{0}, y_{0}\right)=(l-l \cos \alpha,-l \sin \alpha)=(2.546,-6.667)
$$

In that position, $v=\sqrt{2 g l \sin \alpha}=11.431$ and the distance to fall before reaching the level C is $h-\left|y_{0}\right|=h-6.667=23.333$. Along the y-direction,

$$
\begin{aligned}
y=v_{y} t-\frac{1}{2} g t^{2} & \Rightarrow \quad-23.333=(-11.431 \cos \alpha) t-\frac{1}{2} g t^{2} \\
& \Rightarrow \quad t=1.479
\end{aligned}
$$

Along the x-direction,

$$
x=v_{x} t=11.431 \sin \alpha(1.479)=11.271
$$

Thus the horizontal distance of C from A is $11.27+x_{0}=11.27+2.55=13.82 \mathrm{~m}$

