Ia)

$$
\frac{d Q_{1}}{d t}=\frac{d Q_{2}}{d t}+3
$$

$k_{\frac{A l A}{}}^{L}\left(T_{\text {mid }}-T_{L}\right)=k_{\frac{c u}{L} A}^{L}\left(T_{H}-T_{\text {mid }}\right)$

- $\quad T_{\text {mid }}\left(k_{A l}+k_{C u}\right)=k_{C u} T_{H}+T_{L} k_{A C l} \Rightarrow+2$
$T_{\text {mid }}=\frac{k_{c u} T_{A}+k_{A L} T_{L}}{k_{A l}+k_{c u}}$
$k_{a l}=k_{c m}=k$
$T_{\text {mid }}=\frac{k\left(T_{H}+T_{L}\right)}{2 L}=\frac{T_{H}+T_{L}}{2} \Rightarrow$ this mates sense,

$$
k_{A l}=\frac{1}{2} k_{C u}
$$

$$
4+2.5
$$ average of the two

$$
\begin{aligned}
T_{\text {mice }}=L_{\text {M }} \frac{T_{A}+\frac{1}{2} L_{c u} T_{L}}{\frac{3 / 2}{L} L_{c n}} & =\frac{2}{3}\left(T_{A}+\frac{1}{2} T_{L}\right) \\
& =\frac{2}{3} T_{H}+\frac{1}{3} T_{L} \Rightarrow+2.5
\end{aligned}
$$

$\Rightarrow C_{\mathrm{Cu}}$ more conductive man LeAl so $T_{\text {mid }}$ should be nigher timon before.

Problem 1b)

The spherical solid has mass $m=\rho \frac{4 \pi R^{3}}{3}$ and surface area $A=4 \pi R^{2}$. Assume the temperature of the space is effectively 0 K . According to the Stefan-Boltzmann equation,

$$
\begin{equation*}
\frac{d Q}{d t}=-e \sigma A T^{4} \tag{1}
\end{equation*}
$$

where σ is the Stefan-Boltzmann constant. On the other hand,

$$
\begin{gather*}
Q=m C \Delta T \\
\frac{d Q}{d t}=m C \frac{d T}{d t} \tag{2}
\end{gather*}
$$

Combine (1) and (2),

$$
\begin{gathered}
-e \sigma A T^{4}=m C \frac{d T}{d t} \\
\int_{t i}^{t_{f}} d t=\frac{-m C}{e \sigma A} \int_{T_{0}}^{T_{1}} \frac{d T}{T^{4}}
\end{gathered}
$$

Therefore

$$
t_{f}-t_{i}=\frac{-m C}{e \sigma A}\left(\frac{-1}{3 T_{1}^{3}}+\frac{1}{3 T_{0}^{3}}\right)
$$

Since $\frac{m}{A}=\frac{1}{3} R \rho$,

$$
\begin{equation*}
t_{f}-t_{i}=\frac{\rho R C}{9 e \sigma}\left(\frac{1}{T_{1}^{3}}-\frac{1}{T_{0}^{3}}\right) \tag{3}
\end{equation*}
$$

which is the time it takes to cool down to temperature T_{1}.

Midterm 1 Problem 1c Solution

Assuming the gas is a monatomic ideal gas and using the equipartition theorem,

$$
\begin{gather*}
\overline{K E}=\frac{1}{2} m v_{r m s}^{2}=\frac{3}{2} k_{b} T \\
\Rightarrow v_{r m s}=\sqrt{\frac{3 k_{b} T}{m}} \tag{1}
\end{gather*}
$$

Then using the ideal gas law to express $k_{b} T$ in terms of pressure and volume:

$$
\begin{align*}
k_{b} T & =\frac{P V}{N} \\
\Rightarrow v_{r m s} & =\sqrt{\frac{3 P V}{N m}} \tag{2}
\end{align*}
$$

The question states that r is the gas density - the total mass of the gas divided by the volume. Since there are N atoms that each weigh m :

$$
\begin{gather*}
r=\frac{N m}{V} \tag{3}\\
\Rightarrow v_{r m s}=\sqrt{\frac{3 P}{r}} \tag{4}
\end{gather*}
$$

a. We can figure out when heat is flowing in by using the First Law of Thermodynamics in the form $Q_{\mathrm{in}}=\Delta E+W$. If Q_{in} is positive during some part of the cycle, then that part of the cycle contributes to Q_{H}. From this rule we see that heat flows in during the processes $1 \rightarrow 2$ and $2 \rightarrow 3$.

To calculate those contributions to Q_{H}, we first calculate the changes in internal energy and the work done by the gas during each of the processes, and then plug those into the First Law:

$$
\begin{align*}
& Q_{H}^{1 \rightarrow 2}=\Delta E^{1 \rightarrow 2}+W^{1 \rightarrow 2}=\frac{3}{2}\left(3 P_{0} V_{0}-P_{0} V_{0}\right)+0=3 P_{0} V_{0} \tag{1}\\
& Q_{H}^{2 \rightarrow 3}=\Delta E^{2 \rightarrow 3}+W^{2 \rightarrow 3}=\frac{3}{2}\left(6 P_{0} V_{0}-3 P_{0} V_{0}\right)+3 P_{0} V_{0}=\frac{15}{2} P_{0} V_{0} . \tag{2}
\end{align*}
$$

The total Q_{H} is just the sum of these two contributions:

$$
\begin{equation*}
Q_{H}=\frac{21}{2} P_{0} V_{0} . \tag{3}
\end{equation*}
$$

b. The total work done by the engine is equal to the area inside the cycle on the $P V$ diagram:

$$
\begin{equation*}
W_{T}=2 P_{0} V_{0} \tag{4}
\end{equation*}
$$

The efficiency is now easily calculated from the usual formula:

$$
\begin{equation*}
e=\frac{W_{T}}{Q_{H}}=\frac{4}{21} . \tag{5}
\end{equation*}
$$

This is about 19%.
c. To calculate the Carnot efficiency, we first need to figure out the extreme temperatures T_{H} and T_{L}. The ideal gas law tells us that $T=P V / N k$ at any point in the cycle. We see that the lowest temperature is $T_{L}=P_{0} V_{0} / N k$, which occurs at point 1 , and the highest temperature is $T_{H}=6 P_{0} V_{0} / N k$, which occurs at point 3 . Now we just plug this into the Carnot efficiency equation:

$$
\begin{equation*}
e_{\text {Carnot }}=1-\frac{T_{L}}{T_{H}}=1-\frac{1}{6}=\frac{5}{6} . \tag{6}
\end{equation*}
$$

This is about 83%. The rectangular engine has 0.23 times the efficiency of the Carnot engine.

Grading Rubric for Problem 2: Heat Engine (Giancoli 20-69 4th ed.)

a. [10 points]

- 2 points: Identify the parts of the cycle where heat flows in.
- 6 points: Compute the heat flow into the gas during relevant parts of the cycle (partial credit if the computation is correct but the wrong parts of the cycle were chosen).
- 2 points: Add up the individual heat flows to get the total heat flow into the engine.
b. [10 points]
- 7 points: Compute the total work done by the engine (partial credit if work is computed correctly for some parts of the cycle, but not for the cycle as a whole).
- 3 points: Compute the efficiency of the engine using the answer from part (a) $\overline{\text { (partial credit for having the correct formula in terms of work and heat). }}$
c. [10 points]
- 8 points: Compute highest and lowest temperatures (partial credit for identifying where the highest and lowest temperatures occur; partial credit for a correct temperature calculation even if it is not the highest/lowest that the engine acheives).
- 2 points: Compute the Carnot efficiency and note that it is bigger than that of the rectangle (partial credit for knowing that the Carnot engine should be more efficient).

3) a) S is a state variable. After each complete cycle, the gas returns to its original state, so $\Delta S_{\text {gas }}=0$

Since the casurt cycle is reversible, we know that

$$
\begin{aligned}
& \Delta S_{\text {universe }}=\Delta S_{\text {gas }}+\Delta S_{\text {cnidiranument }}=0 \\
& \text { So, } O+\Delta S_{\text {thuicomment }}=0 \\
& \Rightarrow \Delta S_{\text {envisoment }}=0
\end{aligned}
$$

b)

$$
\begin{aligned}
e= & 1-\frac{Q_{L}}{Q_{H}} \stackrel{\curvearrowleft}{=} 1-\frac{T_{L}}{T_{H}} \\
& \text { Sornot } \frac{Q_{L}}{T_{L}}=\frac{Q_{H}}{T_{H}}
\end{aligned}
$$

$$
\begin{aligned}
\Delta S_{a \rightarrow b} & =+\frac{Q_{H}}{T_{H}} \\
\Delta S_{b \rightarrow c} & =O \\
\Delta S_{c \rightarrow a} & =-\frac{Q_{L}}{T_{L}} \\
\Delta S_{a \rightarrow a} & =0
\end{aligned}
$$

$$
\text { So } \Delta S_{\text {gas, } t_{a} t_{a l}}=\frac{T_{H}}{T_{H}}-\frac{Q_{L}}{T_{L}}=0 \text {. }
$$

Reversible, so $\Delta S_{\text {ennimanout }}=-\Delta S_{\text {gas }}=0$.
Thus, $\Delta S_{\text {universe }}=0$.
$Q 5$

reversible, so

$$
\begin{aligned}
\Delta S_{H, e n v} & =-\Delta S_{H, g a s} \\
\Delta S_{L, e n v} & =-\Delta S_{L, \text { gas }}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\Delta S_{\text {universe }} & =\Delta S_{\text {gas }}+\Delta S_{\text {environment }} \\
& =\left(\Delta S_{H, g a s}-\Delta S_{L, j a s}\right)-\left(\Delta S_{\text {L, gas }}-\Delta S_{L, \text { gas }}\right) \\
& =0
\end{aligned}
$$

