MATH 53 - MIDTERM 1

Each problem counts 20 points.
Problem \#1. (a) Compute ∇f for

$$
f(x, y)=e^{x^{2} y+\sin (x y)}
$$

(b) Compute ∇g for

$$
g(x, y, z)=\left(x^{2}+y^{3}+z^{4}\right)^{-1}
$$

Problem \#2. Find the critical points of the function

$$
f(x, y)=x^{4}+2 y^{2}-4 x y
$$

and classify each as a local maximum, local minimum or saddle point.

Problem \#3. The position vector $\mathbf{r}(\mathrm{t})$ of a particle moving in three dimensions satisfies

$$
\mathbf{r}^{\prime}=\mathbf{r} \times \mathbf{a}
$$

where \mathbf{a} is a fixed vector.
Show that either the particle is not moving or else its motion lies within a circle.
(Hint: Show $|\mathbf{r}|$ and $\mathbf{r} \cdot \mathbf{a}$ are constant.)

Problem \#4. Find the area of the region inside the curve

$$
r=4 \sin 2 \theta
$$

and outside the circle

$$
r=2
$$

for $0 \leq \theta \leq \frac{\pi}{2}$.
(Reminders: $\sin \frac{\pi}{6}=\frac{1}{2}, \sin ^{2} x=\frac{1-\cos 2 x}{2}$)

Problem \#5. Assume that the two equations

$$
f(x, y, z)=0, g(x, y, z)=0
$$

together implicitly define y as a function of x and z as a function of x . Find formulas for $y^{\prime}=\frac{d y}{d x}$ and $z^{\prime}=\frac{d z}{d x}$ in terms of the partial derivatives of f and g.

