
Chemistry 120A, Spring 2009

Midterm 1 Solutions

February 20, 2009

Problems

Question 1: Multiple choice problems: 7×3 = 21 points

1. At a finite potential step, the 2nd derivative of the wavefunction
∂Ψ
∂x

, exhibits:

(a) continuity (b) a finite step (c) an infinite step B

2. All else constant, a smaller force constant for the harmonic oscillator will cause the
wavelength corresponding to the energy difference between levels to:

(a) increase (b) decrease (c) stay the same A

3. Can a particle in quantum mechanics pass through a potential barrier that is smaller
than its kinetic energy?

(a) always (b) sometimes (c) never B

4. Which of the following is the quantity |φ〉〈ψ|?
(a) a number (b) a ket (c) an operator C

5. Which of the following is the quantity 〈φ|ψ〉?
(a) a number (b) a ket (c) an operator A

6. All else being equal, if one compares two wavefunctions, the one with the smaller

curvature
(
∂2Ψ
∂x2

)
will have an energy which is:

(a) higher (b) lower (c) either is possible B

7. Which of the following has the longest de Broglie wavelength?

(a) a 1 eV He atom (b) a 1 eV photon (c) a 1 eV electron B
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Question 2: (15 points) Consider applying the Heisenberg uncertainty principle, ∆p∆x ≥ ~
2

, to the
problem of a particle in a one-dimensional box, with box length a.

(a) (5 points) Estimate the uncertainties that are expected in the position (from box size) and
momentum (from Heisenberg), ∆x and ∆p

(1) Because the particle is in the box, we know that ∆x ≤ a
(Any answer in the range 0.1a ≤ ∆x ≤ a is acceptable)

(2) Then, from the Heisenberg uncertainty principle,

∆p∆x ≥ ~
2
⇒ ∆p ≥ ~

2∆x
⇒ ∆p ≥ ~

2a

(b) (5 points) From your estimate of ∆p estimate the lowest possible energy of the system.

The lowest allowed energy level for the particle in a box has a non-zero kinetic energy. This
kinetic energy can be estimated from ∆p:

KE =
p2

2m
∼=

(∆p)2

2m
∼=

(
~
2a

)2

2m
∼=

~2

8ma2

(c) (5 points) Compare your result for the lowest energy of the particle in a box with the result
from classical mechanics and discuss the effect of increasing the mass of the particle.

From quantum, we have the lowest energy of
~2

8ma2
.

From classical mechanics, we have the lowest energy of 0,
(

from E =
1
2
mv2, for v = 0

)
In classical mechanics, the particle can be totally at rest (v = 0), and can have an energy of
zero. In quantum mechanics, the lowest energy the particle can have is a non-zero number (the
zero-point energy). But, as mass is increased in the quantum mechanical model, the zero-point
energy decreases, approaching the classical limit of zero as m→∞.
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Question 3: (18 points). Commutators and measurement. The commutator of two operators is
defined as

[
Â, B̂

]
= ÂB̂−B̂Â, and, if this is zero, we say that the two operators commute. Commuting

and non-commuting operators have very different properties, which this problem explores.

(a) (6 points) Prove that two commuting operators have common eigenfunctions (conversely two
non-commuting operators do not).

If two operators commute, then ÂB̂ = B̂Â. If the eigenfunctions/eigenvectors of Â are given
by:

Â |φn〉 = an |φn〉

Then:
Â
[
B̂ |φn〉

]
= ÂB̂ |φn〉 = B̂Â |φn〉 = B̂an |φn〉 = anB̂ |φn〉 = an

[
B̂ |φn〉

]
⇒ We can see that B̂ |φn〉 is also an eigenfunction of Â if Â and B̂ commute.

⇒ Therefore, we must have B̂ |φn〉 ∝ |φn〉, as they are both eigenfunctions of Â.

⇒ The only way this can be true is if B̂ |φn〉 is equal to a constant times the eigenfunction |φn〉
(In other words, B̂ cannot cause the eigenfunction |φn〉 to be changed)

⇒ We can now see that we must have B̂ |φn〉 = bn |φn〉, which shows that |φn〉 is also an
eigenfunction of B̂, with eigenvalue bn.

⇒ Hence, commuting operators Â and B̂ must have common eigenfunctions.

(b) (6 points) Evaluate the commutator of the operators for kinetic energy and position.

The operators for kinetic energy and position are x̂ = x and T̂ =
p̂2

2m
= − ~2

2m
d2

dx2[
T̂ , x̂

]
ψ(x) = T̂ x̂ψ(x)− x̂T̂ψ(x)

= − ~2

2m
d2

dx2
xψ(x)− x

(
− ~2

2m
d2

dx2

)
ψ(x)

= − ~2

2m

(
d

dx

{
d

dx
xψ(x)

}
− x d

2

dx2
ψ(x)

)
= − ~2

2m

(
d

dx

{
ψ(x) + x

dψ(x)
dx

}
− xd

2ψ(x)
dx2

)
= − ~2

2m

({
dψ(x)
dx

+
dψ(x)
dx

+ x
d2ψ(x)
dx2

}
− xd

2ψ(x)
dx2

)
= − ~2

2m

(
2
dψ(x)
dx

+ x
d2ψ(x)
dx2

− xd
2ψ(x)
dx2

)
[
T̂ , x̂

]
ψ(x) = −~2

m

dψ(x)
dx

⇒
[
T̂ , x̂

]
= −~2

m

d

dx
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Another way this can done is:[
p̂2

2m
, x̂

]
=

p̂2

2m
x̂− x̂ p̂

2

2m

=
1

2m
(
p̂2x̂− x̂p̂2

)
=

1
2m

(p̂p̂x̂− x̂p̂p̂)

=
1

2m
(p̂p̂x̂− p̂x̂p̂+ p̂x̂p̂− x̂p̂p̂)

=
1

2m
(p̂ {p̂x̂− x̂p̂}+ {p̂x̂− x̂p̂} p̂)

=
1

2m
(p̂ [p̂, x̂] + [p̂, x̂] p̂)

=
1

2m
(−i~p̂− i~p̂)

=
1

2m
(−2i~p̂)

= − i~
m
p̂

= − i~
m
· ~
i

d

dx

= −~2

m

d

dx

(c) (6 points) Using your results from parts (a) and (b) above, and the way in which measurement
affects a system in quantum mechanics, discuss whether or not it is possible to know the value of
kinetic energy and position simultaneously based on alternating measurements of kinetic energy
and position.

Kinetic energy and position do not commute, and therefore the cannot be measured simulta-
neously. This is because they do not share common eigenfunctions. A measurement of kinetic
energy will changes the state of the system to the basis of kinetic energy eigenfunctions. A
subsequent measurement of position will then switch the state into position eigenfunctions.
Therefore, alternating these two operators will constantly change the basis the which the state
is represented. This causes the state to be different each time a measurement is taken, and thus
will never give a consistent value for alternating measurements of non-commuting operators.
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Question 4: (16 Points) Suppose a two-level system is described by the Hamiltonian:

Ĥ =
[
E1 0
0 E2

]
Further, suppose that the following normalized state of the system is prepared:

|ψ〉 =
3
5
|φ1〉 −

4
5
|φ2〉

(a) (4 points) What is the probability of measuring the system to have the energy E1 immediately
after the above state is prepared?

|ψ〉 =
3
5
|φ1〉 −

4
5
|φ2〉

Pr(|φ1〉) = |〈φ1|ψ〉|2 =
∣∣∣∣35 〈φ1|φ1〉 −

4
5
〈φ1|φ2〉

∣∣∣∣2
=

∣∣∣∣35
∣∣∣∣2 =

9
25

(b) (7 points) Solve for the wavefunction at time t, and hence discuss how the probability of finding
the system in the state E1 varies with time.

Solve for the wavefunction at time t, and hence discuss how the probability of finding the system
in the state E1 varies with time.

|ψ(t)〉 =
3
5

exp(−iE1t/~) |φ1〉 −
4
5

exp(−iE2t/~) |φ2〉

Pr(|φ1〉) = | 〈φ1|ψ(t)〉 |2

=
∣∣∣∣35 exp(−iE1t/~) 〈φ1|φ1〉 −

4
5

exp(−iE2t/~) 〈φ1|φ2〉
∣∣∣∣2

=
3
5
∗ 3

5
exp(iE1t/~) exp(−iE1t/~) =

9
25

∴ The probability of finding the system in the state E1 is time-independent.

(c) (5 points) Discuss qualitatively, with equations as appropriate, how this would (or would not
change) if the Hamiltonian were changed to:

Ĥ =
[
E1 w
w E2

]

Since a perturbation has been introduced to the system, |φ1〉 and |φ2〉 are no longer eigenstates
of the Hamiltonian. In fact the new eigenstates of the Hamiltonian can be expressed as a super-
position of the |φ1〉 and |φ2〉. From part b we know that an eigenstate has no time-dependence.
However, since we are now dealing with states that are not eigenstates, the probability that the
system will be in state |φ1〉 varies sinusoidally with time. A proof of this can be seen on pages
8 and 9 of chapter 3.
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