
Chemistry 120A, Spring 2009

Midterm 2 Solutions

March 20, 2009

Problems

Problem 1: Multiple choice problems: 7×3 = 21 points

1. Linear combination of solutions to the time-dependent Schrödinger equation are solutions of the
time-dependent Schrödinger equation:

(a) always (b) sometimes (c) never A

2. Linear combination of solutions to the time-independent Schrödinger equation are solutions of the
time-independent Schrödinger equation.

(a) always (b) sometimes (c) never B

3. As the force constant k associated witha diatomic molecule is increased, the uncertainty in the
momentum in the vibrational ground state will:

(a) increase (b) decrease (c) stay the same A

4. How do you expect the wavelength of the n = 1 to n = 2 transition in the H atom to compare with
the same transition in the He+ atom?

(a) longer in H (b) longer in He+ (c) same A

5. Is it possible to simultaneously know the total value of angular momentum and its component along
the x axis?

(a) always (b) sometimes (c) never A

6. In the linear variational method, can an approximated ground state energy be below the true ground
state energy?

(a) always (b) sometimes (c) never C

7. What is the symmetry of this spin wavefunction with respect to particle interchange?

Ψ(1, 2) = α(1)β(2)− α(1)β(2)

(a) symmetric (b) antisymmetric (c) neither B
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Problem 2 (20 Points): Perturbartion theroy: You know the soltuions to the problem:

Ĥ(0)
∣∣∣ψ(0)
m

〉
= E(0)

m

∣∣∣ψ(0)
m

〉
and you are going to try to solve for the eigenvalues and eigenvectors of a related problem:

Ĥ
∣∣∣ψ(0)
m

〉
= Em

∣∣∣ψ(0)
m

〉
where the difference between the two problems is called the perturbation:

Ĥ = Ĥ(0) + λV̂ (1)

and the strength of the perturbation is measured by some parameter λ.

(a) (8 points) By writing power series expanstions in λ for the eigenvalues and eigenvectors, derive
an expression for the leading correction to the eigenvalues of the solved problem due to the
presence of the perturbation.

The power series expations in λ for the eigenvalues and eigenfunctions is given by:

E0 = E
(0)
0 + λE

(1)
0 + λ2E

(2)
0 + . . .

|ψ〉 =
∣∣∣ψ(0)

〉
+ λ

∣∣∣ψ(1)
〉

+ λ2
∣∣∣ψ(2)

〉
+ . . .

We can write the Schrödinger equation, using the Hamiltonian
(
Ĥ = Ĥ(0) + λV̂ (1)

)
. Since we

are solving for the leading expression, we only need the terms which have λ to the first power.

Ĥ |ψ〉 = E |ψ〉(
Ĥ(0) + λV̂ (1)

)(∣∣∣ψ(0)
〉

+ λ
∣∣∣ψ(1)

〉
+ . . .

)
=

(
E

(0)
0 + λE

(1)
0 + . . .

)(∣∣∣ψ(0)
〉

+ λ
∣∣∣ψ(1)

〉
+ . . .

)
λĤ(0)

∣∣∣ψ(1)
〉

+ λV (1)
∣∣∣ψ(0)

〉
= λE(0)

∣∣∣ψ(1)
〉

+ λE(1)
∣∣∣ψ(0)

〉
Ĥ(0)

∣∣∣ψ(1)
〉

+ V (1)
∣∣∣ψ(0)

〉
= E(0)

∣∣∣ψ(1)
〉

+ E(1)
∣∣∣ψ(0)

〉
Left project with

〈
ψ(0)

∣∣〈
ψ(0)

∣∣∣ Ĥ(0)
∣∣∣ψ(1)

〉
+
〈
ψ(0)

∣∣∣V (1)
∣∣∣ψ(0)

〉
=

〈
ψ(0)

∣∣∣E(0)
∣∣∣ψ(1)

〉
+
〈
ψ(0)

∣∣∣E(1)
∣∣∣ψ(0)

〉
E(1)

〈
ψ(0)

∣∣∣ψ(1)
〉

+
〈
ψ(0)

∣∣∣ ˆV (1)
∣∣∣ψ(0)

〉
= E(1)

〈
ψ(0)

∣∣∣ψ(0)
〉

+ E(0)
〈
ψ(0)

∣∣∣ψ(1)
〉

E(1)(0) +
〈
ψ(0)

∣∣∣ ˆV (1)
∣∣∣ψ(0)

〉
= E(1)(1) + E(0)(0)

E(1) =
〈
ψ(0)

∣∣∣ ˆV (1)
∣∣∣ψ(0)

〉
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(b) (7 points) Suppose the know problem you begin with is a three-leve system for which the
unperturbed Hamiltonian and the perturbation are given by the matrices below:

H(0) =

 1 0 0
0 2 0
0 0 4

 , λV(1) =

 0 −2 −1
−2 1 1
−1 1 −1


Evaluate the first order correction to the first excited state.

The basis for H(0) is given by

|1〉 =

 1
0
0

 |2〉 =

 0
1
0

 |3〉 =

 0
0
1


Therefore, the V1 matrix is given by

V(1) =


〈

1
∣∣∣ ˆV (1)

∣∣∣1〉 〈
1
∣∣∣ ˆV (1)

∣∣∣2〉 〈
1
∣∣∣ ˆV (1)

∣∣∣3〉〈
2
∣∣∣ ˆV (1)

∣∣∣1〉 〈
2
∣∣∣ ˆV (1)

∣∣∣2〉 〈
2
∣∣∣ ˆV (1)

∣∣∣3〉〈
3
∣∣∣ ˆV (1)

∣∣∣1〉 〈
3
∣∣∣ ˆV (1)

∣∣∣2〉 〈
3
∣∣∣ ˆV (1)

∣∣∣3〉
 =

 0 −2 −1
−2 1 1
−1 1 −1


The first order corrections are given by the diagonal elements. The first order correction to the
ground state is:

E
(1)
0 =

〈
1
∣∣∣ ˆV (1)

∣∣∣1〉 = 0

The first order correction to the first excited state is:

E
(1)
1 =

〈
2
∣∣∣ ˆV (1)

∣∣∣2〉 = 1

(c) (5 points) Explain whether you expect your answers from part (b) to be accurate or inaccurate,
in a concise sentence or two.

It is inaccurate, because V(1) is the same order of magnitude as H(0). Perturbation theory only
works when the perturbation is small with repect to the unperturbed Hamiltonian. Therefore,
many orders are needed to accurately describe the perturbed system.
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Problem 3 (18 points) Variational method.

(a) (10 points) Explain clearly what the linear variational method is, usingas an example a problem
with two orthonormal trial functions. Your explanation should include a description of how an
approximate energy should be calculated.

In the variational method, a guess wavefunction,
∣∣∣ψ̃〉, is chosen as an approximation to an exact

wavefunction which is unknown. The guess wavefunction generally contains variables that can
be optimized to yield the lowest approximated energy,

Ẽ =

〈
ψ̃
∣∣∣Ĥ∣∣∣ψ̃〉〈
ψ̃
∣∣∣ψ̃〉

The variational theorem states that the approximate energy Ẽ can never be lower that the exact
ground state energy, E0.
In the linear variational method, the guess wavefunction is a linear combination of functions:∣∣∣ψ̃〉 =

∑
j

|φj〉 cj , where the cj ’s are the variatonal parameters. If we minimize the energy Ẽ

with resepct to each cj , the problem becomes a generalized eigenvalue problem: Hc = ẼSc,

where Hαβ =
〈
φα

∣∣∣Ĥ∣∣∣φβ〉 and Sαβ = 〈φα|φβ〉.
In this problem, we are given two orthonormal trial functions, so the overlap matrix is given by:

S =
[
〈φ1|φ1〉 〈φ1|φ2〉
〈φ2|φ1〉 〈φ2|φ2〉

]
=
[

1 0
0 1

]
Which is the identity matrix. Therefore, the generalized eigenvalue problem simplifies to one
we know how to solve: Hc = Ẽc. The approximate energies are the eigenvalues

(
Ẽ
)

of H.

(b) (8 points) Solve the problem given in question 2(b) by the variational method, using as trial
functions the ground state and first excited state of the unperturbed system. Show all of your
working clearly, and obtain the approximate energy of the ground state of the system described
by H.

From 2(b), we have:
H = H(0) + λV(1)

But since we are using only the ground state and the first excited state as our trial functions,
we only take the 1st quadrant of the full matricies.

H =
[

1 0
0 2

]
+
[

0 −2
−2 1

]
=
[

1 −2
−2 3

]
Now, we need to find the eigenvalues of this matrix.

|H− λI| = 0
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∣∣∣∣ 1− λ −2
−2 3− λ

∣∣∣∣ = 0

(1− λ) (3− λ)− 4 = 0
3− λ− 3λ+ λ2 − 4 = 0

λ2 − 4λ− 1 = 0

λ =
4±
√

16 + 4
2

λ =
4±
√

20
2

λ = 2±
√

5

The lowest energy wil lbe the ground state energy, therefore we have E0 = 2−
√

5 ≈ −0.236.

Problem 4 (16 points) Angular momentum algebra.

(a) (8 points) Classically, angular momentum is a vector, L = r×p. Derive a differential expression
for the quantum operator describing the y component of angular momentum from the operators
for position and momentum.

L = r× p =

∣∣∣∣∣∣
i j k
rx ry rz
px py pz

∣∣∣∣∣∣
We know that the operators for position and momentum are given by:

r̂x = x r̂y = y rz = z

p̂x =
~
i

∂

∂x
p̂y =

~
i

∂

∂y
p̂z =

~
i

∂

∂z

Therefore,

L̂ = r̂ × p̂ =

∣∣∣∣∣∣
i j k
r̂x r̂y r̂z
p̂x p̂y p̂z

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
i j k
x y z

~
i

∂

∂x

~
i

∂

∂y

~
i

∂

∂z

∣∣∣∣∣∣∣∣
To find the y component of the angular momentum, we evaluate the following determinant:

L̂y = −

∣∣∣∣∣ x z
~
i

∂

∂x

~
i

∂

∂z

∣∣∣∣∣
= −

(
x

~
i

∂

∂z
− z~

i

∂

∂x

)
=

~
i

(
−x ∂

∂z
+ z

∂

∂x

)
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(b) (8 points) Using the fact that the components of angular momentum have the following commu-
tation relationship that can be summarized as L×L = i~L, evaluate the following commutator:[
L̂2
x, L̂z

]
.

First, we know from L× L = i~L (remembering L is a vector) that[
L̂x, L̂z

]
= −i~L̂y

Therefore, L̂x and L̂z do not commute. This means we must preserve the order of the operators
throughout this problem.[

L̂2
x, L̂z

]
= L̂2

xL̂z − L̂zL̂2
x

= L̂xL̂xL̂z − L̂zL̂xL̂x
= L̂xL̂xL̂z − L̂xL̂zL̂x + L̂xL̂zL̂x − L̂zL̂xL̂x
= L̂x

(
L̂xL̂z − L̂zL̂x

)
+
(
L̂xL̂z − L̂zL̂x

)
L̂x

= L̂x

[
L̂x, L̂z

]
+
[
L̂x, L̂z

]
L̂x

= L̂x

(
−i~L̂y

)
+
(
−i~L̂y

)
L̂x

= −i~L̂xL̂y − i~L̂yL̂x
= −i~

(
L̂xL̂y + L̂yL̂x

)
A second way of doing this starts with the commutator definition:[

L̂x, L̂z

]
= −i~L̂y

L̂xL̂z − L̂zL̂x = −i~L̂y

Which we can use to obtain the following two relations:

L̂xL̂z = L̂zL̂x − i~L̂y
L̂zL̂x = L̂xL̂z + i~L̂y

Now, moving to the commutator of L̂2
x and L̂z:[

L̂2
x, L̂z

]
= L̂2

xL̂z − L̂zL̂2
x

= L̂xL̂xL̂z − L̂zL̂xL̂x
= L̂x

(
L̂xL̂z

)
−
(
L̂zL̂x

)
L̂x

= L̂x

(
L̂zL̂x − i~L̂y

)
−
(
L̂xL̂z + i~L̂y

)
L̂x

= L̂xL̂zL̂x − i~L̂xL̂y − L̂xL̂zL̂x − i~L̂yL̂x
= −i~L̂xL̂y − i~L̂yL̂x
= −i~

(
L̂xL̂y + L̂yL̂x

)
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