UCB Math 110, Fall 2010: Midterm 2

Prof. Persson, November 8, 2010

Na	me:					
SID:					Grading	or
Section:		n: Circle your	Circle your discussion section below:			/ 18
	Sec	Time	Room	GSI	2	/ 6
	01	Wed 8am - 9am	87 Evans	D. Penneys	3	/ 6
	02	Wed 9am - 10am	2032 Valley LSB	C. Mitchell	0	/ 0
	03	Wed 10am - 11am	B51 Hildebrand	D. Beraldo	4	/ 10
	04	Wed 11am - 12 pm	B51 Hildebrand	D. Beraldo		/ 40
	05	Wed 12pm - 1pm	75 Evans	C. Mitchell		/ 40
	07	Wed 2pm - 3pm	87 Evans	C. Mitchell		
	08	Wed 9am - 10am	3113 Etcheverry	I. Ventura		
	09	Wed $2pm - 3pm$	3 Evans	D. Penneys		

I. Ventura

Instructions:

10

• One double-sided sheet of notes, no books, no calculators.

310 Hearst

- Exam time 50 minutes, do all of the problems.
- You must justify your answers for full credit.

Wed 12pm - 1pm

Other/none, explain: _

- Write your answers in the space below each problem.
- If you need more space, use reverse side or scratch pages. Indicate clearly where to find your answers.

- 1. (6 problems, 3 points each) Label the following statements as TRUE or FALSE, giving a short explanation (e.g. a proof or a counterexample).
 - a) Let $A, B \in M_{5 \times 5}(R)$ such that AB = -BA. Then either A or B is non-invertible.

TRUE FALSE (circle one)

b) Every matrix $A \in M_{5\times 5}(R)$ has an eigenvector in \mathbb{R}^5 . TRUE FALSE (circle one)

c) Let $A, B \in \mathsf{M}_{n \times n}(F)$, and suppose A is similar to B. Then A^k is similar to B^k for any positive integer k.

TRUE FALSE (circle one)

1. (cont'd)

d) If 0 is the only eigenvalue of a linear operator T, then T = 0. TRUE FALSE (circle one)

e) If a matrix $A \in M_{n \times n}(F)$ can be transformed into a diagonal matrix by a sequence of elementary row operations of type 3, then A is diagonalizable. TRUE FALSE (circle one)

f) Let V be a finite dimensional vector space and γ be a basis for V^{*}. Then there exists a basis β for V such that $\beta^* = \gamma$.

TRUE FALSE (circle one)

2. (6 points) Find bases for the null space $N(L_A)$ and for the range $R(L_A)$ where

$$A = \begin{pmatrix} 1 & -1 & 1 & -1 \\ 4 & -4 & 5 & -2 \\ 2 & -2 & -1 & -8 \end{pmatrix}.$$

3. (6 points) Let $\mathsf{V}=\mathsf{R}^2$ and define $\mathsf{f},\mathsf{g}\in\mathsf{V}^*$ as follows:

 $f(x,y) = x + y, \quad g(x,y) = x - 2y.$

Find a basis β for V such that its dual basis $\beta^* = (f, g)$.

4. (10 points) Consider the linear operator T on $\mathsf{P}_3(R)$ defined by

$$\mathsf{T}(p(x)) = (x^2 + 1)p''(x).$$

Determine if T is diagonalizable, and if so, find a basis β for $\mathsf{P}_3(R)$ such that $[\mathsf{T}]_\beta$ is a diagonal matrix.