UCB Math 110, Fall 2010: Midterm 2

Prof. Persson, November 8, 2010

Name:
SID:
Section: Circle your discussion section below:

Sec	Time	Room	GSI
01	Wed 8am-9am	87 Evans	D. Penneys
02	Wed 9am-10am	2032 Valley LSB	C. Mitchell
03	Wed 10am-11am	B51 Hildebrand	D. Beraldo
04	Wed 11am-12pm	B51 Hildebrand	D. Beraldo
05	Wed 12pm-1pm	75 Evans	C. Mitchell
07	Wed 2pm-3pm	87 Evans	C. Mitchell
08	Wed 9am-10am	3113 Etcheverry	I. Ventura
09	Wed 2pm - 3 pm	3 Evans	D. Penneys
10	Wed 12pm-1pm	310 Hearst	I. Ventura

Grading

$1 / 18$
$2 \quad / 6$
$3 \quad / 6$

/ 40

Instructions:

- One double-sided sheet of notes, no books, no calculators.
- Exam time 50 minutes, do all of the problems.
- You must justify your answers for full credit.
- Write your answers in the space below each problem.
- If you need more space, use reverse side or scratch pages.

Indicate clearly where to find your answers.

1. (6 problems, 3 points each) Label the following statements as TRUE or FALSE, giving a short explanation (e.g. a proof or a counterexample).
a) Let $A, B \in \mathrm{M}_{5 \times 5}(R)$ such that $A B=-B A$. Then either A or B is noninvertible.

TRUE FALSE (circle one)
b) Every matrix $A \in \mathrm{M}_{5 \times 5}(R)$ has an eigenvector in R^{5}.

TRUE FALSE (circle one)
c) Let $A, B \in \mathrm{M}_{n \times n}(F)$, and suppose A is similar to B. Then A^{k} is similar to B^{k} for any positive integer k.

TRUE FALSE (circle one)

1. (cont'd)
d) If 0 is the only eigenvalue of a linear operator T , then $\mathrm{T}=0$. TRUE FALSE (circle one)
e) If a matrix $A \in \mathrm{M}_{n \times n}(F)$ can be transformed into a diagonal matrix by a sequence of elementary row operations of type 3 , then A is diagonalizable.

TRUE FALSE (circle one)
f) Let V be a finite dimensional vector space and γ be a basis for V^{*}. Then there exists a basis β for V such that $\beta^{*}=\gamma$.

TRUE FALSE (circle one)
2. (6 points) Find bases for the null space $N\left(L_{A}\right)$ and for the range $R\left(L_{A}\right)$ where

$$
A=\left(\begin{array}{rrrr}
1 & -1 & 1 & -1 \\
4 & -4 & 5 & -2 \\
2 & -2 & -1 & -8
\end{array}\right)
$$

3. (6 points) Let $\mathrm{V}=\mathrm{R}^{2}$ and define $\mathrm{f}, \mathrm{g} \in \mathrm{V}^{*}$ as follows:

$$
\mathrm{f}(x, y)=x+y, \quad \mathrm{~g}(x, y)=x-2 y
$$

Find a basis β for V such that its dual basis $\beta^{*}=(\mathrm{f}, \mathrm{g})$.
4. (10 points) Consider the linear operator T on $\mathrm{P}_{3}(R)$ defined by

$$
\mathbf{T}(p(x))=\left(x^{2}+1\right) p^{\prime \prime}(x) .
$$

Determine if T is diagonalizable, and if so, find a basis β for $\mathrm{P}_{3}(R)$ such that $[\mathrm{T}]_{\beta}$ is a diagonal matrix.

