UCB Math 110, Fall 2010: Midterm 1

Prof. Persson, October 4, 2010

Sec	Time	Room	GSI	
01	Wed 8am - 9am	87 Evans	D. Penneys	
02	Wed 9am - 10am	2032 Valley LSB	C. Mitchell	
03	Wed 10am - 11am	B51 Hildebrand	D. Beraldo	
04	Wed 11am - 12pm	B51 Hildebrand	D. Beraldo	
05	Wed 12pm - 1pm	75 Evans	C. Mitchell	
07	Wed 2pm - 3 pm	87 Evans	C. Mitchell	
08	Wed 9am - 10am	3113 Etcheverry	I. Ventura	
09	Wed 2pm - 3 pm	3 Evans	D. Penneys	
10	Wed 12pm - $1pm$	310 Hearst	I. Ventura	

Other/none, explain:

Instructions:

- One double-sided sheet of notes, no books, no calculators.
- Exam time 50 minutes, do all of the problems.
- You must justify your answers for full credit.
- Write your answers in the space below each problem.
- If you need more space, use reverse side or scratch pages. Indicate clearly where to find your answers.

- 1. (6 problems, 3 points each) Label the following statements as TRUE or FALSE, giving a short explanation (e.g. a proof or a counterexample).
 - **a)** Let $V = R^n$ and W = R. Then $\mathcal{L}(V, W)$ is isomorphic to $P_n(R)$.

b) Let V be a vector space and $\mathsf{T},\mathsf{U}:V\to V$ be two linear operators. Then $\mathsf{N}(\mathsf{U})\subseteq\mathsf{N}(\mathsf{T}\mathsf{U}).$

c) Let V be a vector space and $\mathsf{T},\mathsf{U}:\mathsf{V}\to\mathsf{V}$ be two linear operators. Then $\mathsf{R}(\mathsf{U})\subseteq\mathsf{R}(\mathsf{U}\mathsf{T}).$

1. (cont'd)

d) The set $S = \{p \in \mathsf{P}(F) : p'(0) = p(0)\}$ is a subspace of $\mathsf{P}(F)$.

e) Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation. Then $\mathbb{R}^2 = \mathsf{N}(\mathsf{T}) \oplus \mathsf{R}(\mathsf{T})$.

f) Let W_1 and W_2 be 3-dimensional subspaces of R^5 . Then W_1 and W_2 must have a common nonzero vector.

2. (12 points) Let $\mathsf{T} : \mathsf{M}_{2 \times 2}(R) \to \mathsf{M}_{2 \times 2}(R)$ be defined by

$$\mathsf{T}(A) = BA - A^t$$
 where $B = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$.

a) Prove that T is a linear transformation.

b) Find bases for $\mathsf{N}(\mathsf{T})$ and $\mathsf{R}(\mathsf{T}).$

3. (10 points) Let V be a vector space, and $T : V \to V$ a linear operator. Suppose $x \in V$ is such that $T^m(x) = 0$ but $T^{m-1}(x) \neq 0$ for some positive integer m. Show that $\{x, T(x), T^2(x), \ldots, T^{m-1}(x)\}$ is linearly independent.