UCB Math 110, Fall 2010: Midterm 1

Prof. Persson, October 4, 2010

Name:
SID:
Section: Circle your discussion section below:

Grading

Sec	Time	Room	GSI
01	Wed 8am - 9am	87 Evans	D. Penneys
02	Wed 9am - 10am	2032 Valley LSB	C. Mitchell
03	Wed 10am - 11am	B51 Hildebrand	D. Beraldo
04	Wed 11am-12pm	B51 Hildebrand	D. Beraldo
05	Wed 12pm -1pm	75 Evans	C. Mitchell
07	Wed 2pm -3pm	87 Evans	C. Mitchell
08	Wed 9am -10am	3113 Etcheverry	I. Ventura
09	Wed 2pm -3pm	3 Evans	D. Penneys
10	Wed 12pm -1pm	310 Hearst	I. Ventura

Other/none, explain: \qquad

Instructions:

- One double-sided sheet of notes, no books, no calculators.
- Exam time 50 minutes, do all of the problems.
- You must justify your answers for full credit.
- Write your answers in the space below each problem.
- If you need more space, use reverse side or scratch pages.

Indicate clearly where to find your answers.

1. (6 problems, 3 points each) Label the following statements as TRUE or FALSE, giving a short explanation (e.g. a proof or a counterexample).
a) Let $\mathrm{V}=R^{n}$ and $\mathrm{W}=R$. Then $\mathcal{L}(\mathrm{V}, \mathrm{W})$ is isomorphic to $\mathrm{P}_{n}(R)$.
b) Let V be a vector space and $\mathrm{T}, \mathrm{U}: \mathrm{V} \rightarrow \mathrm{V}$ be two linear operators. Then $N(U) \subseteq N(T U)$.
c) Let V be a vector space and $\mathrm{T}, \mathrm{U}: \mathrm{V} \rightarrow \mathrm{V}$ be two linear operators. Then $R(U) \subseteq R(U T)$.
2. (cont'd)
d) The set $S=\left\{p \in \mathrm{P}(F): p^{\prime}(0)=p(0)\right\}$ is a subspace of $\mathrm{P}(F)$.
e) Let $\mathrm{T}: R^{2} \rightarrow R^{2}$ be a linear transformation. Then $R^{2}=\mathrm{N}(\mathrm{T}) \oplus \mathrm{R}(\mathrm{T})$.
f) Let W_{1} and W_{2} be 3-dimensional subspaces of R^{5}. Then W_{1} and W_{2} must have a common nonzero vector.
3. (12 points) Let $\mathrm{T}: \mathrm{M}_{2 \times 2}(R) \rightarrow \mathrm{M}_{2 \times 2}(R)$ be defined by

$$
\mathrm{T}(A)=B A-A^{t} \quad \text { where } B=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right) .
$$

a) Prove that T is a linear transformation.
b) Find bases for $N(T)$ and $R(T)$.
3. (10 points) Let V be a vector space, and $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$ a linear operator. Suppose $x \in \mathrm{~V}$ is such that $\mathrm{T}^{m}(x)=0$ but $\mathrm{T}^{m-1}(x) \neq 0$ for some positive integer m. Show that $\left\{x, \mathbf{T}(x), \mathbf{T}^{2}(x), \ldots, \mathbf{T}^{m-1}(x)\right\}$ is linearly independent.

