Name: \qquad
Signature: \qquad

Chem 3B Su10

Neil O.L. Viernes

SID: \qquad
PRINT YOUR NAME CLEARLY!!

Midterm 2

This exam has 11 pages; make sure you have them all. Page 11 is blank. Use as scratch paper, anything written on it will NOT be graded.

Please place answers in designated spaces. Please write clearly. Messy or ambiguous answers will not be graded.

This exam is 90 minutes long. No clarifying questions will be answered by the GSI's after the exam begins.

Mark one of the following. If you are enrolled in Chem 3BL, mark off your laboratory section.
__ Lecture Only
(Professor Name \qquad _)
__ 101 - Michael Chang
__ 102 - Amy McCarthy
__ 103 - Rob Padilla
__ 107 - Rob Padilla (Evening)
__ 108 - Kevin Zhao
__ 109 - Katherine He
__ 201 - David Nagle
__ 202 - Greg Dallinger
__ 203 - Reyu Sakakibara
__ 204 - Susan Kim
__ 207 - Arash Nayeri
__ 208 - Philip Chung
\qquad

Do not write in this box
1)
2) \qquad (27)
3) \qquad (16)
4) \qquad (18)
5) \qquad
6) \qquad (24)
7) \qquad (16)
8) \qquad (15)
9) \qquad (12)
\qquad

1) (12 pts)

Provide nomenclature or structures for the following:

1,3-D.bnomo-5-nitrob=nzene

3,5-Dibromonitobenzene

N-Cyclohexylbutanamine

Acetophenone

Propanoic Anhydride

2) (27 pts)

Complete the following roadmap. One compound or reaction step per box.

3) (16 pts)

Identify the most acidic hydrogen. Rationalize your answer.

H

$j_{\text {aromatic }}^{n}$

Determine if the following molecules are aromatic, anti-aromatic or non-aromatic. Assume that all of these compounds cannot bend out of planarity.

Aromatic

Aromatic

Anti-
aromatic

Aromatic

Draw intermediate structures to help rationalize the substitution patterns observed for the following reactions.

Additomel resonance structure stabilizes the para-substituted intermediate

sutho/pank subst. mould generate a destabilizing resonance Contributor

meta substitution does not have this destabilizing contributor

4) (18 pts)

Provide the structures for the products for the following reactions.

(Exc Product)

(Endo Product)

Only one of the following trienes will undergo electrocyclic ring closing reactions. Circle your answer and provide an explanation.

vs

too fur curry to rect.

Determine if heat or light is used to obtain the products specified. Identify the direction of the rotation (conrotary or disrotary).

con.

dis

Draw molecular orbitals rationalizing your answer to the first electrocyclic ring opening reaction above.

5) (20 pts)

Provide a mechanism for the following transformation.

6) (24 pts)

Provide a mechanism for the following transformation.

7) (16 pts$)$

Provide the best synthetic route to the following molecule.
 missing, assumed.

$$
\begin{aligned}
& \text { 1) } \mathrm{H}^{+} \\
& \text {(2) } \mathrm{MaOH} / \mathrm{H}_{2} \mathrm{O} \text { missing } \\
& \text { H2O voile } \\
& \text { noducte. ap }
\end{aligned}
$$

8) (15 pts)

Provide the best synthetic route to the following molecule.

From and $\mathrm{H}_{3} \mathrm{CC}=\mathrm{CCN}$ (identify if the alkene is cis or trans) and any starting materials 3 carbons or less

$$
\xrightarrow[\text { con. }]{h \nu}
$$

1) CiAlH_{4}

$$
\text { 中2) } \mathrm{H}+1 \mathrm{H}_{\mathrm{C}} \mathrm{O}
$$

9) (12 pts)

Provide the best synthetic route to the following molecule.

product

