NE 180 Midterm II Fall Semester 2009

17 November 2009

Seventy-Five Minutes, Closed Book. One $8-\frac{1}{2} " \times 11 "$ Sheets of Notes Allowed. Plasma Formulary Allowed.

1. A tokamak plasma has an ion temperature profile given by:

$$
T_{i}(x)=T_{0}\left(1-\left(\frac{r}{a}\right)^{2}\right)^{0.3}
$$

and $T_{0}=15.0 \mathrm{KeV}$, and $a=2.0 \mathrm{~m}$ with a circular bore (no elongation). The magnetic field $B_{\phi}(r=0)$ is 4.0 T . The aspect ratio A is 3.0. The safety factor $q(r)$ is given by $q(r)=1.0 /\left(1-(2 / 3)(r / a)^{2}\right)$. Assume that the ion density is $10^{20} \mathrm{~m}^{-3}$ everywhere and that the ions are DT with an average mass of 2.5 proton masses.
(a) At $r=0.9 a$, find $T_{i}, \tau_{i}, \omega_{c i} \tau_{i}$, and κ_{\perp}^{i}.
(b) Find the classical ion heat flux at $r=0.9 a$ in watts per square meter. Give the total heat flux through this magnetic flux surface.
(c) Find the neoclassical ion heat at $r=0.9 a$, assuming that the ions are in a banana regime (lowest collisionality) as the total heat flux through this magnetic flux surface.
(d) If the electrons are at a temperature of 10.0 keV at everywhere, then find the volumetric ion-to-electron heat exchange rate at $r=$ 0 in megawatts per cubic meter.
(e) Find the volumetric ohmic heating at $r=0$. Give the answer in megawatts per cubic meter. Hint: note that the toroidal current can be derived from q :

$$
J_{\phi}(0)=\frac{2 B_{\phi}(0)}{\mu_{0} q(0) R_{0}}
$$

2. A laser-driven indirect drive ICF target achieves a compressed density such that ninety-nine percent of the blackbody radiation penetrates into the compressed core, which means that $\hbar \omega_{p e}=0.63 k T_{\gamma}$, where T_{γ} is the hohlraum radiation temperature. Take this temperature to be $k T_{\gamma}=300 \mathrm{eV}$.
(a) Find the value of this compressed density as an electron number density n_{e} in cm^{-3}.
(b) Find the compressed mass density ρ in $\mathrm{g} \mathrm{cm}^{-3}$ if the fuel is D-T. Give this also as a ratio to the density of liquid DT $\left(0.25 \mathrm{~g} \mathrm{~cm}^{-3}\right)$.
(c) Take the burnup to be $f_{B}=\rho R /(6+\rho R)$ and $\rho R=1 \mathrm{~g} \mathrm{~cm}^{-2}$. Find the yield in megajoules.
(d) Find the laser energy required if the laser energy equals twice the blackbody radiation from two laser entrance holes, each 3 mm diameter, for 10 ns pulse duration.
(e) Find the target gain Q from the above.
