NE 180 Midterm II Fall Semester 2009

17 November 2009

Seventy-Five Minutes, Closed Book. One $8 - \frac{1}{2}$ " × 11" Sheets of Notes Allowed. Plasma Formulary Allowed.

1. A tokamak plasma has an ion temperature profile given by:

$$T_i(x) = T_0(1 - (\frac{r}{a})^2)^{0.3}$$

and $T_0 = 15.0$ KeV, and a = 2.0 m with a circular bore (no elongation). The magnetic field $B_{\phi}(r=0)$ is 4.0 T. The aspect ratio A is 3.0. The safety factor q(r) is given by $q(r) = 1.0/(1-(2/3)(r/a)^2)$. Assume that the ion density is 10^{20} m⁻³ everywhere and that the ions are DT with an average mass of 2.5 proton masses.

- (a) At r = 0.9a, find T_i , τ_i , $\omega_{ci}\tau_i$, and κ_{\perp}^i .
- (b) Find the classical ion heat flux at r = 0.9a in watts per square meter. Give the total heat flux through this magnetic flux surface.
- (c) Find the neoclassical ion heat at r = 0.9a, assuming that the ions are in a banana regime (lowest collisionality) as the total heat flux through this magnetic flux surface.
- (d) If the electrons are at a temperature of 10.0 keV at everywhere, then find the volumetric ion-to-electron heat exchange rate at r = 0 in megawatts per cubic meter.

(e) Find the volumetric ohmic heating at r = 0. Give the answer in megawatts per cubic meter. Hint: note that the toroidal current can be derived from q:

$$J_{\phi}(0) = \frac{2 B_{\phi}(0)}{\mu_0 q(0) R_0}$$

- 2. A laser-driven indirect drive ICF target achieves a compressed density such that ninety-nine percent of the blackbody radiation penetrates into the compressed core, which means that $\hbar\omega_{pe} = 0.63kT_{\gamma}$, where T_{γ} is the hohlraum radiation temperature. Take this temperature to be $kT_{\gamma} = 300$ eV.
 - (a) Find the value of this compressed density as an electron number density n_e in cm⁻³.
 - (b) Find the compressed mass density ρ in g cm⁻³ if the fuel is D-T. Give this also as a ratio to the density of liquid DT (0.25 g cm⁻³).
 - (c) Take the burnup to be $f_B = \rho R/(6 + \rho R)$ and $\rho R = 1$ g cm⁻². Find the yield in megajoules.
 - (d) Find the laser energy required if the laser energy equals twice the blackbody radiation from two laser entrance holes, each 3 mm diameter, for 10 ns pulse duration.
 - (e) Find the target gain Q from the above.