ME106 - Midterm\#1 - Problem 1 solution

a/ \boldsymbol{u}_{θ} : circumferential velocity at radial position r .
Ωr_{2} : tangential velocity at $\mathrm{r}=\mathrm{r}_{2}$ due to rotation of outer cylinder.
So the LHS is the ratio of circumferential velocity at r to the tangential velocity at r_{2}.
$\left[\boldsymbol{u}_{\theta}\right]=\mathrm{L}^{1} \mathrm{~T}^{-1},\left[\Omega r_{2}\right]=\mathrm{T}^{-1} . \mathrm{L}$
$\left[\frac{1}{1-\kappa^{2}}\left(\frac{r}{r_{2}}-\kappa^{2} \frac{r_{2}}{r}\right)\right]=\mathrm{I}$ as $[\kappa]=\mathrm{I}$ ('II" stands for 'no dimension', or $\left.\mathrm{L}^{\mathrm{o}} \mathrm{M}^{\mathrm{o}} \mathrm{T}^{\mathrm{o}}\right)$.
b/ Atr$=\mathrm{r}_{1}, \frac{u_{\theta}}{\Omega r_{2}}=\frac{1}{1-\kappa^{2}}\left(\frac{r_{1}}{r_{2}}-\kappa^{2} \frac{r_{2}}{r_{1}}\right)=0$ (Thus, the Inner cylinder is fixed).

$$
\text { At } \mathrm{r}=\mathrm{r}_{2}, \frac{u_{\theta}}{\Omega r_{2}}=\frac{1}{1-\kappa^{2}}\left(\frac{r_{2}}{r_{2}}-\kappa^{2} \frac{r_{2}}{r_{2}}\right)=1 \text {. }
$$

The fluid particles located at $\mathrm{r}=\mathrm{r}_{1}$ or $\mathrm{r}=\mathrm{r}_{2}$ have the same velocity as the tangential velocity at the walls of the cylinders. The 'no-slip' condition is satisfied. The fluid "sticks" to the surface of the cylinders because it has viscosity.
c/ Shear stress at $\mathrm{r}=\mathrm{r}_{1}$ (assuming that $\frac{\partial}{\partial y}=\frac{\partial}{\partial r}$):
$\tau_{1}=\left.\mu \frac{\partial u_{\theta}}{\partial r}\right|_{r=r 1}=\mu \frac{\Omega r_{2}}{1-\kappa^{2}}\left[\frac{\partial}{\partial r}\left(\frac{r}{r_{2}}\right)-\kappa^{2} \frac{\partial}{\partial r}\left(\frac{r_{2}}{r}\right)\right]_{r=r 1}=\left.\mu \frac{\Omega r_{2}}{1-\kappa^{2}}\left[\frac{1}{r_{2}}+\kappa^{2} \frac{r_{2}}{r^{2}}\right]\right|_{r=r 1}$
Since: $\frac{\partial}{\partial r}\left(\frac{1}{r}\right)=\frac{-1}{r^{2}}, \quad \tau_{1}=\left.\mu \frac{\partial u_{\theta}}{\partial r}\right|_{r=r 1}=\mu \frac{\Omega r_{2}}{1-\kappa^{2}}\left[\frac{1}{r_{2}}+\kappa^{2} \frac{r_{2}}{r_{1}^{2}}\right]=\frac{2 \mu \Omega}{1-\kappa^{2}}$
d/ Shear stress at $\mathrm{r}=\mathrm{r}_{2}$
$\tau_{2}=\left.\mu \frac{\partial u_{\theta}}{\partial r}\right|_{r=r_{2}}=\mu \frac{\Omega r_{2}}{1-\kappa^{2}}\left[\frac{1}{r_{2}}+\kappa^{2} \frac{r_{2}}{r_{2}^{2}}\right]=\frac{2 \mu \Omega}{1-\kappa^{2}}\left(\frac{1+\kappa^{2}}{2}\right)$
But $r_{1}<r_{2} \Rightarrow \kappa<1 \Rightarrow \tau_{1}>\tau_{2}$
e/ Torque on the inner cylinder: $\quad T=r_{1} \cdot \tau_{1} \cdot A_{1}=\frac{4 \pi \mu \Omega r_{1}^{2}}{1-\kappa^{2}}$
Torque (or torsion) is defined as the product of a force by a lever arm (here this arm is r_{1}). Shear stress is a force per unit area. The area A_{1} is the SURFACE AREA associated with the perimeter of the inner cylinder. Since the problem is per unit length (in z-direction) of the cylinder axis, A_{1} is reduced to the circumference of the inner cylinder.
Numerical computations: From chart, $\mu=0.4 \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2}$ (Log scale on the vertical axis !!); Also, $\kappa=0.667, \mathrm{r}_{1}=0.2 \mathrm{~m}, \Omega=10 \mathrm{rad} / \mathrm{s}$, (Observe units are put into equation to check the units of the desired quantity).

$$
T=r_{1} \cdot \tau_{1} \cdot A_{1}=\frac{4 \pi \times 0.4 \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2} \times 10 \mathrm{rad} / \mathrm{s} \times(.2 \mathrm{~m})^{2}}{1-.667^{2}}=3.6 \mathrm{~N}-\mathrm{m} / \mathrm{m}(\mathrm{of} \mathrm{z})
$$

Problem 2 Solution
a)

$$
\left[\frac{F_{x}}{\gamma R^{2}}\right]=\frac{\frac{M L 1}{T^{2} L}}{\frac{M L}{L^{3} T^{2} L^{2}}}=\frac{\frac{M}{T^{2}}}{\frac{M}{T^{2}}}=I \quad\left[\frac{F_{y}}{\gamma R^{2}}\right]=\frac{\frac{M L 1}{T^{2} L}}{\frac{M L}{L^{3} T^{2}} L^{2}}=\frac{\frac{M}{T^{2}}}{\frac{M}{T^{2}}}=I \quad\left[\frac{M_{o}}{\gamma R^{2}}\right]=\frac{\frac{M L}{T^{2} L}}{\frac{M L}{L^{3} T^{2} L^{3}}}=\frac{\frac{M}{T^{2}}}{\frac{M}{T^{2}}}=I
$$

I is dimensionless
b)

$$
\begin{aligned}
& F_{x}=\gamma h_{c} A=\gamma y_{c} 2 R=\gamma 2 R^{2} \\
& \text { (} A=2 R * \text { unit length in } z \text {, normal to paper) } \\
& \frac{F_{x}}{\gamma R^{2}}=2 \\
& M_{o}{ }^{(x)}=F_{x}\left(2 R-y_{R}\right)=\gamma 2 R^{2}\left(2 R-\frac{4}{3} R\right)=\gamma \frac{4}{3} R^{3} \\
& \frac{M_{o}{ }^{(x)}}{\gamma R^{3}}=\frac{4}{3}
\end{aligned}
$$

c) Vertical Force due to weight of water on top of structure

Area of Wedge $\left(A_{w}\right)=$ Area of Square $R \times R\left(A_{s q}\right)-1 / 4$ Area of Circle with radius $R\left(A_{q c}\right)$

$$
\begin{gathered}
\mathrm{A}_{\mathrm{w}}=\mathrm{A}_{\mathrm{sq}}-\mathrm{A}_{\mathrm{qc}}=R^{2}-\frac{1}{4} \pi R^{2}=R^{2}\left(1-\frac{1}{4} \pi\right) \\
F_{y}=-W=-A_{w} \gamma=-\gamma R^{2}\left(1-\frac{1}{4} \pi\right) \\
\frac{F_{y}}{\gamma R^{2}}=-\left(1-\frac{1}{4} \pi\right)
\end{gathered}
$$

Need to solve for the Centroid of the Wedge to find the point of action for the F_{y}

$$
A_{w} x_{c_{-} w}=A_{s q} x_{c_{-} q q}-A_{q c} x_{c_{-} q c}
$$

[Note: centroid values were on reference sheets on the Midterm Quiz]

$$
\begin{gathered}
x_{c_{-} w}=\frac{A_{s q} x_{c_{-} q}-A_{q c} x_{c_{-} q}}{A_{w}} \\
x_{c_{-} w}=\frac{R^{2} \frac{1}{2} R-\frac{1}{4} \pi R^{2}\left(R-\frac{4 R}{3 \pi}\right)}{R^{2}\left(1-\frac{1}{4} \pi\right)}=\Rightarrow \quad x_{c_{-} w}=\frac{R\left(\frac{5}{6}-\frac{\pi}{4}\right)}{\left(1-\frac{1}{4} \pi\right)} \\
M_{o}{ }^{(y)}=F_{y} x_{c_{-} w}=\frac{R\left(\frac{5}{6} \frac{\pi}{4}\right)}{\left(1-\frac{1}{4} \pi\right)} \gamma R^{2}\left(1-\frac{1}{4} \pi\right)=>\quad \frac{M_{o}(y)}{\gamma R^{3}}=\left(\frac{5}{6}-\frac{\pi}{4}\right)
\end{gathered}
$$

e) $\tan (\theta)=\frac{\frac{F_{y}}{\gamma R^{2}}}{\frac{F_{x}}{\gamma R^{2}}}=\frac{-\left(1-\frac{1}{4} \pi\right)}{2} \cong-0.1073=>\theta=-6.12^{\circ} \xrightarrow[F_{R}]{F_{x}}{ }^{\theta} F_{y}$

Problem 3 Solution:
\forall_{1}, \forall_{2} are the volumes of the rubber chamber, not including the tube
v_{1}, v_{2} are the specific volumes of configuration 1 ,configuration 2.

$$
\begin{aligned}
& \text { Dimensions }[v]=\frac{L^{3}}{M} \\
& P_{1} v_{1}=P_{2} v_{2}(=R T, \text { isothermal process }) \\
& =>\frac{v_{1}}{v_{2}}=\frac{\forall_{1}}{\forall_{2}} \text { if no mass enters system }==>P_{2}=P_{1} \frac{\forall_{1}}{\forall_{2}} \\
& P_{2}+13.3 \gamma_{h 20} h=P_{1} \frac{\forall_{1}}{\forall_{2}}+13.3 \gamma_{h 20} h=P_{1} \quad \rightarrow \quad \frac{\forall_{1}}{\forall_{2}}=1-\frac{13.3 \gamma_{h 20} h}{P_{1}} \\
& \qquad \frac{\forall_{2}}{\forall_{1}}=\frac{P_{1}}{P_{1}-13.3 \gamma_{h 20} h}
\end{aligned}
$$

b) $\quad \gamma_{\mathrm{H} 20}=62.4 \mathrm{lb} / \mathrm{ft}^{3}, \mathrm{P}_{\mathrm{atm}}=14.7 \mathrm{lb} / \mathrm{in}^{2}$

$$
\begin{aligned}
& \mathrm{P}_{1}=\mathrm{P}_{\mathrm{abs}}=14.7 \mathrm{lb} / \mathrm{in}^{2} \mathrm{~h}=6 \mathrm{in}=1 / 2 \mathrm{ft} \\
& \frac{\forall_{1}}{\forall_{2}}=1-\frac{13.3 \gamma_{h 20} h}{P_{1}} \quad \frac{\forall_{1}}{\forall_{2}}=0.8039 \quad \frac{\forall_{2}}{\forall_{1}}=1.2439
\end{aligned}
$$

c) $\quad \mathrm{R}^{\circ}=60^{\circ}+459.67^{\circ}=519.67^{\circ} \quad \forall_{1}=0.012 \mathrm{ft}^{3} \quad \mathrm{P}_{1}=\mathrm{P}_{\mathrm{abs}}=14.7 \mathrm{lb} / \mathrm{in}^{2}$

$$
\begin{aligned}
& P_{1} v=R T \quad v=\frac{R T}{P_{1}} \quad \frac{\forall_{1}}{m}=\frac{R T}{P_{1}} \quad m=\frac{P_{1} \forall_{1}}{R T} \\
& m=\frac{14.7 \frac{\mathrm{lb}}{\text { in }^{2}} * 14 \frac{i^{2} \hat{n}^{2}}{f t^{*}} * 0.012 f t^{3}}{1.71 \times 10^{3} \frac{\text { lft }}{\text { slugR }^{o} * 519.67 R^{o}}}=28.58 \times 10^{-6} \text { slugs }
\end{aligned}
$$

