
Solution to MT 2: Problem#1 
 
(a) Streamlines passing through A=(1,1):  
=> equation of the streamline is the hyperbola:  

 
   Streamlines passing through B=(3,2):  

=> equation of the streamline is:  
 

(b) Flow rate through a line across points A and B:  
  This flow rate is per unit z, so it has the dimension L2/T. 
 

(c) Material acceleration (use material derivative):  
   

and   
 
 

One contribution is the 
rate of change of V0 with time; the second contribution is from the convective derivative, change 
following the velocity vector: 

 
Velocity vector:  

 
 
Radial vector:  . 
 
Comparing the acceleration expressions with the above vectors: 
 
 

 
 
 

One component  lines up with vector V, the other lines up  
With the radial vector from the origin. 
 
(d) To make the material acceleration in the y-direction vanish, we need: 

  
for all y, which is possible.  Hence the condition:  
However, the x-acceleration cannot be made to vanish. 

 
(e)  The differential equation satisfied by V0 is:  

 
This equation can be solved separating the Vo & t  variables:  . 
 
Integrating both sides and using the initial condition V0(0)=K, we get:    
 
or  
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Solution to MT2: Problem#2 
 
(a) Mass conservation:  =>   (1) 

 
(b) Bernoulli’s equation is applicable for an incompressible and inviscid fluid, in a 

steady flow, along a streamline.  We assume that it can be used even when the 
flow is unsteady.  We take z1=0. 

 
. 

 In the present case: p0=p1=patm  =>                   (2)   
 
 At t~0, we can assume that v0~0 and (z0-z1) ~ h0  =>  
 
(c) Assuming a constant exiting velocity v1, then it is straight forward to esimate:   

 
 

 
 
 

 
(d) Equation (2), with  h(t) now being variable, becomes:  .  

 
 

(e) Combining this equation with equation (1), we obtain:  .  
 

Noting that : 
 
  

 
     This is a 1st order ordinary differential equation in h(t), with the radical term being just 

a constant. 
________________ 
 
(f) Extra credit.  Solving the above ODE by separating the h and t variables yields:  
 
 
 
 
     The drain time TB is such that h(t=TB) = 0: 
 

 =>   
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Solution to MT2 -  Problem #3 (Using velocity not flow rate): 
(a)  The CV is the part of fluid inside the pipe, then cut off at inlet (2) and at outlet (2) 

   Using Conservation of Mass Equation, we can relate the velocities at the inlet (1) and outlet (2): 

 
Using Bernoulli’s Equation with no loss, we can relate the pressures at the inlet(1) and outlet(2): 

 

 

 

This gives  the pressure ratio: 

 

The pressure-velocity “parameter”  shows up naturally, as in the “bent pipe example”  in class. 

(b)  Steady flow, no time derivative term, RTT for momentum in the x-direction: 

 

 

 

Note that the velocities are all related to Q1   

                      

(c) The equation for conservation of linear momentum applied in the y-direction: 
            
 
 
 

The above expression can be made comparable to the Fx expression if we get an expression for p2/ρv2
2.  

This can be simply obtained by dividing (2) by ρv2
2 /p1 : 

 
 
 

 
This gives the final expression for Fy in terms of the inlet variables: 
 
 

 

(d) Now that the Fx and Fy components due to the walls have been found the angle with which they act is:
 

  
No numerical values were given, thus the exact angle cannot 
be determined.  However, the range that the angle must be 
as follows (measured counterclockwise from +y-axis to be 
positive) as Fx is <0): 
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