MATH 54, midterm test, Fall 2010.

1. Let $W:=\left\{f \in \mathbb{P}_{3}: f(2)=f^{\prime \prime}(2)\right\}$. Is W a subspace of \mathbb{P}_{3} ?
2. Let

$$
A:=\left[\begin{array}{rrr}
2 & 3 & 4 \\
-2 & -3 & -4 \\
2 & 1 & 2 \\
-2 & -1 & -2
\end{array}\right] \quad \text { and } \quad \vec{v}:=\left[\begin{array}{r}
2 \\
-2 \\
2 \\
2
\end{array}\right] .
$$

(a) Is the linear system $A \vec{x}=\vec{v}$ solvable?
(b) Find the distance between \vec{v} and the column space $\operatorname{Col}(A)$ of A.
3. Let P be the parallelogram in \mathbb{R}^{2} determined by $(-3,1)$ and $(1,1)$. Let T be the linear map with standard matrix

$$
\left[\begin{array}{rr}
3 & 2 \\
0 & -1
\end{array}\right] .
$$

Find the area of the figure $T(P)$ and sketch its graph.
4. Mark each of the following true or false. Provide short explanations.
(a) The nonzero rows of a matrix form a basis for its row space.
(b) Elementary row operations on a matrix can change its null space.
(c) The nonpivot columns of a matrix are always linearly dependent.
(d) If A is an $m \times n$ matrix and the linear transformation $\vec{x} \mapsto A \vec{x}$ is onto, then $\operatorname{rank} A=m$.
(e) If $\mathcal{B}=\left\{\vec{b}_{1}, \ldots, \vec{b}_{n}\right\}$ and $\mathcal{C}=\left\{\vec{c}_{1}, \ldots, \vec{c}_{n}\right\}$ are bases for a vector space V, then the j th column of the change-of-coordinates matrix $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ is the coordinate vector $\left[\vec{c}_{j}\right]_{\mathcal{B}}$.
5. Let

$$
A:=\left[\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{3} & \frac{2}{3}
\end{array}\right], \quad \vec{x}_{0}:=\left[\begin{array}{r}
4 \\
-1
\end{array}\right], \quad \text { and let } \quad \vec{x}_{n}:=A \vec{x}_{n-1}, \quad n=1,2, \ldots .
$$

Find $\lim _{n \rightarrow \infty} \vec{x}_{n}$.
6. Classify the quadratic form $-5 x_{1}^{2}+4 x_{1} x_{2}-2 x_{2}^{2}$: is it positive definite, positive semidefinite, negative definite, negative semidefinite, or indefinite?

