Engineering 117
 Fall Semester 2010 First Midterm Examination

October 8, 2010

Seventy-Five Minutes, Closed Book. One: $8 \frac{1}{2}{ }^{\prime \prime} \times 11^{\prime \prime}$ sheet of NOTES ALLOWED.

1. A differential equation for a function $y(x)$ is given by

$$
y^{\prime \prime}(x)-2 y^{\prime}(x)+y(x)=8 \cosh (x)
$$

(a) How many initial conditions are required to find the complete solution for $y(x)$?
Two.
(b) How many independent solutions to the homogeneous equation $y^{\prime \prime}(x)-2 y^{\prime}(x)+y(x)=0$ must be found? What are these solutions? Two. Since the characteristic equation $\lambda^{2}-2 \lambda+1=(\lambda-1)^{2}$ has a double root at $\lambda=1$, the two solutions are e^{x} and xe^{x}.
(c) Does the right hand side of the equation contain terms which are a solution to the homogeneous equation ? If so, what would you take as a form $y_{p}(x)$ for the particular response? (Hint: write out cosh in terms of elementary exponential functions.)
Since $\cosh \mathrm{x}=1 / 2\left(\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{-\mathrm{x}}\right)$, the forcing term has a component which is part of the homogeneous response, on its double root. Therefore the particular response is of the form $\mathrm{Ax}^{2} \mathrm{e}^{\mathrm{x}}+\mathrm{Be}^{-\mathrm{x}}$.
(d) Solve for for $y_{p}(x)$.

Solving for $\mathcal{L}\left[\mathrm{Ax}^{2} \mathrm{e}^{\mathrm{x}}\right]=4 \mathrm{e}^{\mathrm{x}}$ and $\mathcal{L}\left[\mathrm{Be}^{-\mathrm{x}}\right]=4 \mathrm{e}^{-\mathrm{x}}$ gives $\mathrm{A}=2$ and $\mathrm{B}=1$, thus $\mathrm{y}_{\mathrm{p}}(\mathrm{x})=2 \mathrm{x}^{2} \mathrm{e}^{\mathrm{x}}+\mathrm{e}^{-\mathrm{x}}$.
(e) For initial conditions $y(0)=0$ and $y^{\prime}(0)=-1$, solve for the complete response. Note that $y_{p}(0)=1$ and $y_{p}^{\prime}(0)=-1$. So
$y_{h}(0)=-1$ and $y_{h}^{\prime}(0)=0$. Since $y_{h}(x)=C e^{x}+D x e^{x}$, this is satisfied when $\mathrm{C}=-1$ and $\mathrm{D}=1$, thus:

$$
\mathrm{y}(\mathrm{x})=2 \mathrm{x}^{2} \mathrm{e}^{\mathrm{x}}+\mathrm{e}^{-\mathrm{x}}-\mathrm{e}^{\mathrm{x}}+\mathrm{xe}^{\mathrm{x}}
$$

2. A system of ODEs is written in the form

$$
\frac{d \mathbf{y}(t)}{d t}=\left[\begin{array}{rr}
-2 & 1 \\
1 & -2
\end{array}\right] \mathbf{y}(t)
$$

(a) Solve for the eigenvalues $\left(\lambda_{1}, \lambda_{2}\right)$ of the matrix operating on $\mathbf{y}(t)$ on the RHS and then write down a general solution for $\mathbf{y}(t)$ in terms of two independent vectors \mathbf{y}_{1} and \mathbf{y}_{2}, yet to be determined.
$\operatorname{det}(\lambda \mathbf{I}-\mathbf{A})=\lambda^{2}+\mathbf{3} \lambda+\mathbf{1}=(\lambda+\mathbf{3})(\lambda+\mathbf{1})$ which gives
$\left(\lambda_{\mathbf{1}}, \lambda_{\mathbf{2}}\right)=(-\mathbf{3},-\mathbf{1})$. Then $\mathbf{y}(\mathbf{t})=\mathbf{y}_{\mathbf{1}} \mathrm{e}^{-\mathbf{3 t}}+\mathbf{y}_{\mathbf{2}} \mathrm{e}^{-\mathbf{t}}$
(b) Now solve for the two vectors \mathbf{y}_{1} and \mathbf{y}_{2} by using the eigenvalues calculated in part (a).
For $\lambda=-3$, we seek the solution to

$$
\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

which is satisfied for

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{r}
1 \\
-1
\end{array}\right]
$$

For $\lambda=-1$, we seek the solution to

$$
\left[\begin{array}{rr}
-1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

which is satisfied for

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

and thus the general solution is

$$
\mathbf{y}(\mathbf{t})=\mathbf{c}_{\mathbf{1}}\left[\begin{array}{r}
1 \\
-1
\end{array}\right] \mathbf{e}^{-\mathbf{3 t}}+\mathbf{c}_{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \mathbf{e}^{-\mathbf{t}}
$$

(c) If the initial condition is $\mathbf{y}(0)=\left[\begin{array}{l}0 \\ 1\end{array}\right]$, find $\mathbf{y}(t)$ for all time $t>0$.

By inspection, $\left(c_{1}, c_{2}\right)=(-1 / 2,1 / 2)$ and thus

$$
\mathbf{y}(\mathbf{t})=\frac{-1}{2}\left[\begin{array}{r}
1 \\
-1
\end{array}\right] \mathbf{e}^{-\mathbf{3 t}}+\frac{1}{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \mathbf{e}^{-\mathbf{t}}
$$

3. A differential equation for a forced system is given by

$$
y^{\prime \prime}(t)+3 y^{\prime}(t)+2 y(t)=f(t)
$$

where

$$
f(t)= \begin{cases}\cos t-3 \sin (t) & t \geq 0 \\ 0 & t<0\end{cases}
$$

(a) Write down a Laplace transform equation in the form $\mathbf{G}(s) \mathbf{Y}(s)+$ $\mathbf{I C}(s)=\mathbf{F}(s)$, where $\mathbf{G Y}+\mathbf{I C}$ and \mathbf{F} are the transforms of the LHS and RHS, respectively. Leave the initial conditions IC as arbitrary at this point.

$$
\left(s^{2}+3 s+2\right) \mathbf{F}(s)-(s+3) f(0)-\mathbf{f}^{\prime}(0)=\frac{s-3}{s^{2}+1}
$$

(b) For initial conditions $y(0)=1$ and $y^{\prime}(0)=0$, solve for $\mathbf{Y}(s)$. Write this as an expanded partial fraction.

$$
\begin{aligned}
Y(s) & =\left(\frac{1}{(s+2)(s+1)}\right)\left(3+s+\frac{s-3}{s^{2}+1}\right) \\
& =\frac{s(s+2)(s+1)}{(s+2)(s+1)\left(s^{2}+1\right)} \\
& =\frac{s}{s^{2}+1}
\end{aligned}
$$

(c) Find the complete solution $y(t)$ for all times $t>0$.

$$
\mathbf{y}(\mathbf{t})=\cos (\mathbf{t})
$$

