CS 170 Fall 2008 - Solutions to Midterm 1

October 14, 2008

True: nlogn < n2.

n?
nlogn

True: 2610827 — (2l0827)% — pe,

False: lim,,_, s

= 0.

> N =

False (not always True): For f(n) = clogon = O(logn), we have
2/(") = n¢ which is not O(n?) for ¢ > 3.

5. True: log;y, 50000 < 2.5 because 10025 = 100000 > 50000; hence by
Master’s theorem, T'(n) = ©(n!°8100 50000) — (p2:5),

6. False.

7. If we apply Master’s theorem, a = b = 3 and ¢ = 1; since log, a = ¢,
we have T'(n) = nlogn.

8. True: ged(3,8) =1 and in fact 37! = 3.

9. True: We cannot have 4 = 1 mod 8, since then 4o = 8k + 1, and 1
would be a multiple of 4, a contradiction.

10. True: There are approximately N/In(/N) prime numbers < N. Thus
the probability that an n-bit number is prime is approximately W =

ﬁ for N = 2". That would be ~ 22 = 9(1).

11. True.

12. True: Let u be the vertex with lowest post order number that is not
a sink. Then there exists some edge (u,v). If vertex v is visited while
exploring u, then post[v] < post[u]; hence that cannot happen. This
means v is already visited once we begin to explore u, but then the
edge (u,v) would be a backedge, and the graph would have a cycle,
contradicting the fact that the graph is a DAG.

13. False: The graph with vertex set V = {1,2,3} and edge set £ =
{(1,2),(2,1),(1,3)} is a counterexample. We can have pre[l] =
1, pre[2] = 2, post[2] = 3, pre[3] = 4, post[3] = 5, post[l] = 6,
and then vertex 2 has lowest post order but the strongly connected
component {1,2} is not a sink strongly connected component, since
it has the outgoing edge (1,3) to the strongly connected component

{3}



14.

15.

O(n): If the graph has a path of length n — 1, the DFS stack may
contain n vertices.

O(logn): The stack space is at most O(logn), the depth of the tree.
N =77 =pq forp="7, g =11. We have (p —1)(¢ — 1) = 60 and

d = 7' mod 60. To calculate inverse of 7, we use Extended Euclid
algorithm:

60 = 8-7+ 4,
= 1-4+4+ 3
4 = 1-3+ 1
Thus
1 = 4-—-1-38
= 41 (7-1-)

=2-4+(-1)-7
= 2-(60—-8-7+(-1)-7=2-60+ (—17) - 7.

Hence (—17)-7=1 mod 60 and d =7"! = —17 =43 mod 60.

Since gcd(3,60) = 3 # 1, we cannot choose d as inverse of e.

1,14, =1, —i.
11 1 1 0 1
1 i -1 —i 11 i
1 -1 1 -1 0 a -1
1 —i 1 i 0 —i
1 1 1 1 1 1 %
ST U T I e A T o1 | 3
FIT o 411 -1 1 -1 0| %
0 1 4 1 —i 0 i
Let uq,...,u, be neighbors of u. Vertex u is on a cycle if and only if
[pre(uy ), post(u)], ..., [pre(uk), post(ug)] are disjoint intervals.

Proof: (= part) If u is not on a cycle, then removing u partitions
the graph into k subgraphs Gi,..., Gy such that u; € V(G;). DFS
on u proceeds by first visiting u, then exploring G; completely, then
exploring G5 completely, and so on. Therefore pre(u;) < post(u;) <
pre(ug) < post(ug) < ... < pre(ux) < post(uy).

(<= part) If [pre(u;), post(u;)] intersects [pre(u; ), post(u;)], then with-
out loss of generality, we can assume pre(u;) < pre(u;) < post(u;) <
post(u;). This means that there is a path P from u; to u; that does
not use vertex u. Therefore u is on the cycle (u,u;) + P + (u;, ).

In fact, we can have a graph where v and v are in the same strongly
connected component, and yet pre and post intervals of u and v are
disjoint: In directed graph G = (V, E) with vertex set V = {a, b, u, v}



and edge set E = {a,b), (b,u), (u,a), (b,v),(v,a)}, we have pre(a) =
1, pre(b) = 2, pre(u) = 3, post(u) = 4, pre(v) = 5, post(v)

6, post(b) =7, post(a) = 8, and yet G is strongly connected.

. To find the kth smallest number of n numbers:

1.
2.

Divide the n numbers into n/5 groups of size 5.

Let S be the set of the medians of these groups. Since finding
the median of a set of size 5 takes O(1) time, S can be found in
O(n) time.

Find z = median(S) recursively using T'(n/5) time.

Split the n numbers into three sets: Sy, {x}, Sg, where Sy, is the
set of numbers < x and Sy is the set of numbers > z. Finding
S and Sk can be done in O(n) time.

If k < |SL|, recursively find the kth smallest element in Sy; else
if k = |SL|+ 1, return z; else since k& > |[SL| + 1, recursively
find the (k — |SL| — 1)th smallest element in Sg. Since we know
that |S¢|,|Sr| > 3n/10, we have |Sr|,|Sr| < 7n/10, and the
recursive call takes < T'(7n/10) time.

The total running time amounts to

T(n) =T(n/5)+ T(7n/10) + O(n).

. We can prove by induction that T'(n) < cn for suitable constant c:

T(n) =T(n/5)+T(Tn/10) + O(n) < cn/5+c- /104 Cn < cn,

as long as (1/54 7/10)c+ C' < ¢ or equivalently ¢ > 10C. Therefore
T(n) = O(n).

(Notice that in the above analysis it is crucial that 1/5+4 7/10 < 1.
Would this recursive algorithm still have O(n) running time if we had
divided the numbers into groups of 3 rather than groups of 57)



