PHYSICS 7B - Fall 2010
 Midterm 1, R. Ramesh
 Monday, September 27, 2010

Use the convention that $\Delta \mathrm{E}=\mathrm{Q}-\mathrm{W}$ on this exam.

Problem 1 (20 points)

Consider a gas being blown along at a velocity $\mathbf{u}=u \hat{z}$, so that its velocity distribution is given by

$$
F(\mathbf{v})=\frac{1}{Z} e^{-m(\mathbf{v}-\mathbf{u})^{2} / 2 k T}
$$

Note that this is a probability distribution for the vector quantity \mathbf{v}, not the scalar speed $\mathbf{v}=|\mathbf{v}|$, and has units of [velocity] ${ }^{-3}$.
a) Find $\langle v\rangle,\left\langle v^{2}\right\rangle$ and $v_{\text {rms }}$.
b) Find the peak velocity where $F(v)$ is maximized.

Problem 2 (15 points)

One hundred grams of ice at $0^{\circ} \mathrm{C}$ is dropped into 200 g of water at $49^{\circ} \mathrm{C}$. The system is thermlly isolated. After a period of time, the ice has entirely melted, leaving 300 g of water at $6^{\circ} \mathrm{C}$. Assume the specific heat of water is constant and equal to $1 \mathrm{JK}^{-1} \mathrm{~kg}^{-1}$.
a) Calculate the latent heat of fusion for water.
b) Calculate $\Delta \mathrm{S}$ for the entire system.

Problem 3 (25 points)

For the thermodynamic cycle on the right with an ideal diatomic gas as the working material,
a) Calculate W and Q for each of the four sides of the PV diagram.
b) Sketch T vs. S for this process. You need not indicate specific values of T or S on your plot, but label the points 1-4 corresponding to those on the P-V diagram.
c) Compare the efficiency of this engine with the efficiency of a Carnot engine for $T_{H}=400 \mathrm{~K}, \mathrm{~T}_{\mathrm{C}}=300 \mathrm{~K}, \mathrm{~V}_{1}=1 \mathrm{~L}$, and $\mathrm{V}_{2}=5 \mathrm{~L}$.

Problem 4 (15 points)

Using what you know about heat conduction, derive equations for the effective thermal conductivity of two materials with the same area and thickness but different thermal conductivities k_{1} and k_{2} when
a) The materials have are arranged in series (heat flows through one then through the other).
b) The materials conduct heat in parallel (heat flows through both simultaneously).

Problem 5 (25 points)

Use a combination of heat engines and heat pumps to prove that no engine can be more efficient than a Carnot engine when operating between a given maximum and minimum temperature.

