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CS3 Midterm 1                                 
Fall 2006 Titterton 

Read and fill in this page now 
 

         
Official Use Only! No suggestions! 

 
         (1 pt) Prob 0 __________ 
 
         (9)     Prob 1 __________ 
 
         (6)     Prob 2a__________ 
         

(4) 2b_________ 
 
          (10)   Prob 3 __________ 
 
         (9)      Prob 4 __________ 
 

   (9)       Prob 5a _________ 
 
(4) 5b _________ 
 
Raw Total 
(out of 52)         _________ 
 
Scaled Total 
(30)                  __________ 

 
You have 80 minutes to finish this test, which should be reasonable. 
Your exam should contain 6 problems (numbered 0-5) on 9 total pages. 
 
This is an open-book test. You may consult any books, notes, or other paper-based inanimate 
objects available to you. Read the problems carefully. If you find it hard to understand a problem, 
ask us to explain it. 
 
Restrict yourself to Scheme constructs covered in chapters 3-6 and 11 of Simply Scheme, the 
Difference Between Dates case study, both the first and recursive versions. You can always use 
helper procedures, and procedures from other questions you’ve answered. 
 
Please write your answers in the spaces provided in the test; if you need to use the back of a page 
make sure to clearly tell us so on the front of the page. 
 
Partial credit will be awarded where we can, so do try to answer each question. 
 
Good Luck! 

Name:  

 Instructional 
Login (eg, cs3-ab): 

 

UCWISE login:  

Lab section (day and 
time): 

 

T.A.:  

Name of the person 
sitting to your left: 

 

Name of the person 
sitting to your right : 
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0. (1 point) 
 
Put your login name on the top of each page. 
Also make sure you have provided the information requested on the first page. 
And, don’t forget to read the “Roman Numerals” case study for the lab! 
 
1. (9 points). Fill in the blanks. 
 
Write the result of evaluating the Scheme expression that comes before the �. If the Scheme 
expression will result in an error, write ERROR in the blank and describe the error. 
 

1 (count (word ‘cs3 ‘roxor)) � 

2 (count (sentence ‘cs3 ‘roxor)) � 

3 (member? ‘dem ‘(texas democratice party)) � 

4 (item 3 ‘a ‘b ‘c ‘d) � 

5 (appearances ‘a ‘(alabama)) � 

6 (equal? (or ‘how ‘about ‘this) 
             (and ‘how ‘about ‘this)) � 

7 (equal? ‘fred (or ‘joe ‘fred)) � 

8 (or ‘false 
         (equal? (quotient 7 7) 0)) �  

9 (define (mystery wd) 
     (if (empty? Wd) 
             “” 
            (word (first wd)  ‘cs3  (mystery  (bf wd))))) 
 
(mystery ‘cs3) � 
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2. Those scheming doctors…. (A: 6 points, B: 4 points) 
 
Consider a predicate stressed? that could be used by doctors to determine whether a patient 
has encountered a jump in heart rate within a certain time period. stressed? takes a sentence 
of numbers representing heart rates taken each minute, and returns # t if two adjacent rates 
differ by more than 10 beats per minute, and # f otherwise. 
 

                            (stressed? ‘(70 71 72 73 74)) � # f 
(stressed? ‘(70 71 72 83 84)) � # t 
(stressed? ‘(70 71 72 60 59)) � # t 

 
Part A. Below is a buggy version of stressed? with the conditional cases numbered: 
 

         (define (stressed? rates) 
1     (cond ((empty? rates) # t) 
2               ((empty? (bf rates)) # f) 
3               ((and (<=  (- (first rates) (first (bf rates))) 10) 

                       (<=  (- (first (bf rates)) (first rates)) 10 )) 
                (stressed? (bf (bf rates)))) 

4                (else  # f))) 
 
For each of the conditional cases above, fill in the corresponding row on the table below: 
 

 Base  
or  
recursive case? 

Write OK if it is correct, otherwise write an argument (i.e., a 
sentence of rates) that will either return an incorrect answer or 
cause an ERROR because of this condition. 

 
 
1 
 
 

  

 
 
2 

  

 
 
3 

  

 
 
4 
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Part B.  A fellow student wants to simplify the 3rd condition by writing a predicate called 
within-10?. This procedure takes two numbers, and returns true if there is a difference of 10 
or less between the two numbers. 
 
This student, although a very nice person, isn’t the most careful scheme programmer. Write 
test cases for within-10? to fully test the procedure. Write enough test cases to catch all 
possible bugs, but don’t write too many: i.e., don’t write several test cases that test the same 
thing. 
 
Make sure you include both the call to within-10? as well as the correct return value. 
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3. Leaping from Tuesday to Tuesday… (10 points) 
 
Write a function named tuesday-span that, when given two dates in 2002, returns the 
number of Tuesdays in the period spanned by the two dates. January 1, 2002 was a Tuesday 
(as was December 31). Some examples appear below. 
 
            (tuesday-span  ‘(january 1)  ‘(January 3) )        �    1 
            (tuesday-span  ‘(january 2)  ‘(January 5) )        �    0 
            (tuesday-span  ‘(january 6)  ‘(January 9) )        �    1 
            (tuesday-span  ‘(january 1)  ‘(January 8) )        �    2 
            (tuesday-span  ‘(january 1)  ‘(January 31) )      �    53 
 
You may assume that the first argument date is the same as or earlier than the second 
argument date. You may use any function appearing “Difference Between Dates” code, 
which works as well for dates in the 2002, without defining it (the “complete” version is 
included in Appendix A of this test). There are both recursive and non-recursive solutions to 
this problem. 
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4. Put on your translation hat… (9 points) 
 
Write a procedure a12en to translate sentences from “Algolian” to English. Algolian 
sentences have the following rules, which differ from English: 

• Sentences are either questions or statements. In Algolian questions, a “?” will be the 
first element of the sentence. In English questions, the “?” should go at the end. 
Statements have no punctuation. 

• In an Algolian statement, the subject is in the second position. In English, the subject 
is in the first position, followed by the verb. 

• In an Algolian question, the subject is in the third position. In an English question, the 
verb is in first position followed by the subject. 

• In Algolian, verbs are always at the end of the sentence, and always have an extra 
“ing” at the end of the word. In English, verbs don’t have the extra “ing”, and they go 
first if the sentence is a question, or second if the sentence is a statement. 

• The first word in Algolian (that isn’t a “?”) can’t be translated into English. Simply 
remove it from the corresponding English sentence. All other words not covered by 
one of these rules should be copied verbatim. 

Examples will make this easier to understand: 
(a12en  ‘(doying  I  friend  with  joe  bob  
aming) ) 

� ( I  am  friend  with  joe  bob) 

(a12en  ‘(?  boing  you  to  dinner  
cominging) ) 

� (coming  you  to  dinner  ?) 

(a12en  ‘(?  pwing  joe  fish  eating) ) � (eat  joe  fish  ?) 
 
The resulting sentences aren’t necessarily valid English, as the examples show. Use helper 
functions in order to make your code easier to read and write. 
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5. Good help is hard to find… (A: 10 points, B: 4 points) 
 
This question concerns a database of tutors, and the use of good abstraction. A tutor entry is 
stored in scheme as a word, with 1-3 parts separated by asterisks (*). 

• The first part is the tutor’s name, and must be present. It can be any length, and will not 
contain an asterisk. 

• The second part is the tutor’s discipline, and may or may not be present. Disciplines are 
always non-numeric, and may be any length, and will not contain an asterisk. You won’t 
have to work with this part, other than recognizing that it could be in a tutor entry. 

• The third part is the tutor’s rating, and may or may not be present. This is an integer 
between 1 and 6. If the rating is missing from the entry, that tutor is considered to have a 
rating of 0. 

 
The following are all valid entries for tutors: 
 
 Andre_3000 
 joe*English 
 Peter_Jennings*2 
 Sade*Music*5 
 
Part A. Write two accessors for tutor entries: one for the name and one for the rating. (Do not 
write one for discipline). Both procedures take a tutor entry as the single parameter. The accessor 
for name will return the name as a word; the accessor for rating will return an integer between 0 
and 6. Be sure to use meaningful names for your procedures and arguments. 
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Part B. Write a predicate hire?, which takes a tutor entry and a sentence of “bab” tutor names. 
hire? Should return # f if the tutor should not be hired, and # t otherwise. Tutors should not be 
hired if their rating are below 4 or if their names appear within the sentence of bad tutor names. 
 
(hire?  ‘Sade*music*5 
           ‘(peter_jennings  andre_3000  joe) ) 

� # t 

(hire?  ‘Sade*music*5 
            ‘(peter_jennings  andre_3000  joe  Sade) ) 

� # f 

(hire?  ‘joe  ‘( )  ) � # f 
 
Use proper abstraction. 
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Appendix A: Difference between dates, complete version 
(Appendix B in the reader) 

 
; Access procedures for the components of a date. 
 
(define  (month-name  date)  (first  date)) 
(define  (date-in-month  date)  (first  (butfirst  date))) 
 
 
 
; Return the number of days from January 1 to the first day of the named month. 
 
(define  (days-preceding  month) 
     (cond 
         ( (equal?  month  ‘january)  0) 
         ( (equal?  month  ‘february)  31) 
         ( (equal?  month  ‘march)  59) 
         ( (equal?  month  ‘april)  90) 
         ( (equal?  month  ‘may)  120) 
         ( (equal?  month  ‘june)  151) 
         ( (equal?  month  ‘july)  181) 
         ( (equal?  month  ‘august)  212) 
         ( (equal?  month  ‘september)  243) 
         ( (equal?  month  ‘october) 273) 
         ( (equal?  month  ‘november)  304) 
         ( (equal?  month  ‘december)  334)  )   ) 
 
 
 
; Return the number of days from January 1 to the given 
; date, inclusive. Date represents a date in 2002. 
 
(define  (day-of-year  date) 
     (+  
          (days-preceding  (month-name  date) ) 
          (date-in-month  date) )   ) 
 
 
; Return the difference in days between earlier-date and  
; later-date. Earlier-date and later-date both represent 
; dates in 2002, with earlier-date being the earlier of the two. 
 
(define  (day-span  earlier-date  later-date) 

(+  
   1 
      (- 
         (day-of-year  later-date) 
         (day-of-year  earlier-date)  )   )  ) 


