Solutions to the first midterm

Christian Zickert

Problem 1 (30 points). Mark the following as true or false. To get full credit you must justify your answer. Each question is worth 6 points. A correct answer with no justification is worth 2 points, and a good justification may earn you points even if your answer is wrong.
(a) Every finitely generated abelian group of order 8 is isomorphic to either $\mathbb{Z} / 8 \mathbb{Z}$ or $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z}$.
Solution: False; $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ is another possibility.
(b) Every subgroup of S_{3} is abelian.

Solution: False; S_{3} is not itself abelian. It is true, however, that every proper subgroup of S_{3} is abelian.
(c) Every permutation in S_{n} can be factored into a product of disjoint transpositions.

Solution: False; A transposition has order 2, and since disjoint cycles commute, any product of disjoint transpositions must also have order 2. In particular, a permutation of order 3 can not be factored into a product of disjoint transpositions.
(d) The symmetry group of a regular heptagon (7-gon) has a subgroup of order 7.

Solution: True; The subgroup generated by a rotation by $2 \pi / 7$ has order 7.
(e) $\mathbb{C} \backslash\{0\}$ has a non-trivial finite subgroup.

Solution: True; As an example, $\{-1,1,-i, i\}$ is a subgroup of order 4. In fact, $\mathbb{C} \backslash\{0\}$ has a subgroup of order n for each natural number n.

Problem 2 (25 points). Let $A=\{a, b, c, d\}$ be a set with 4 elements, and let $\sigma \in S_{A}$ be a permutation satisfying that $\sigma(a)=a$.
(a) ($\mathbf{1 5}$ points). Show that σ can not have order 4 .

Solution: Since σ fixes a, we may regard σ as a permutation in $S_{\{b, c, d\}}$, which is a group of order 6 . Since the order of an element divides the order of the group (Theorem 10.12), it follows that σ can not have order 4.
(b) (10 points). For each $n \in\{1,2,3\}$, give a concrete example where σ has order n.

Solution: The identity has order $1,(b, c)$ has order 2 , and (b, c, d) has order 3. All these permutations fix a.

Problem 3 (20 points). Determine the order of the following groups:
(a) (5 points). $S_{4} \times \mathbb{Z} / 7 \mathbb{Z}$.

Solution: S_{4} has order $4!=24$ and $\mathbb{Z} / 7 \mathbb{Z}$ has order 7 . Hence, $S_{4} \times \mathbb{Z} / 7 \mathbb{Z}$ has order 168.
(b) (5 points). The symmetry group of the plus symbol, i.e. the subset of \mathbb{R}^{2} given by $\left\{(s, t) \in \mathbb{R}^{2} \mid\right.$ st $\left.=0,-1 \leq s \leq 1,-1 \leq t \leq 1\right\}$.
Solution: There are 4 reflections (horizontal, vertical, and two diagonal) and 4 rotations, so the symmetry group has order 8 . It is isomorphic to the symmetry group of the square.
(c) (5 points). The subgroup of $\mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 10 \mathbb{Z} \times \mathbb{Z} / 12 \mathbb{Z}$ generated by $(3,8,10)$.
Solution: Using Theorem 6.14, we see that 3 has order $4 / \operatorname{gcd}(4,3)=4$ in $\mathbb{Z} / 4 \mathbb{Z}, 8$ has order $10 / \operatorname{gcd}(10,8)=5$ in $\mathbb{Z} / 10 \mathbb{Z}$, and 10 has order $12 / \operatorname{gcd}(12,10)=6$ in $\mathbb{Z} / 12 \mathbb{Z}$. By Theorem 11.9, the order of $(3,8,10)$ in $\mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 10 \mathbb{Z} \times \mathbb{Z} / 12 \mathbb{Z}$ is $\operatorname{lcm}(4,5,6)=60$.
(d) (5 points). The factor group G / H, where $G=\mathbb{Z} / 9 \mathbb{Z}$ and H is the subgroup of G generated by 6 .

Solution: Since 6 has order 3 in $\mathbb{Z} / 9 \mathbb{Z}, H$ has order 3. It follows that the order of G / H is $9 / 3=3$.

Problem 4 (25 points). Let $\mathrm{GL}_{n}(\mathbb{R})$ be the group of invertible $n \times n$ matrices. Let $\mathrm{SL}_{n}(\mathbb{R})$ be the subset of $\mathrm{GL}_{n}(\mathbb{R})$ consisting of matrices with determinant 1.
(a) (10 points). Show that $\mathrm{SL}_{n}(\mathbb{R})$ is a normal subgroup of $\mathrm{GL}_{n}(\mathbb{R})$.

Solution: By definition, $\mathrm{SL}_{n}(\mathbb{R})$ is the kernel of the homomorphism

$$
\operatorname{det}: \mathrm{GL}_{n}(\mathbb{R}) \rightarrow \mathbb{R} \backslash\{0\}
$$

By Corollary $13.20, \mathrm{SL}_{n}(\mathbb{R})$ is a normal subgroup of $\mathrm{GL}_{n}(\mathbb{R})$.
(b) (15 points). Show that the factor group $\mathrm{GL}_{n}(\mathbb{R}) / \mathrm{SL}_{n}(\mathbb{R})$ is isomorphic to $\mathbb{R} \backslash\{0\}$.

Solution: By Theorem 14.11, $\mathrm{GL}_{n}(\mathbb{R}) / \mathrm{SL}_{n}(\mathbb{R})$ is isomorphic to the image of the determinant homomorphism. Since this homomorphism is surjective (for any $a \in \mathbb{R} \backslash\{0\}$, we have $a=\operatorname{det}\left(\begin{array}{ll}a & 0 \\ 0 & 1\end{array}\right)$), the result follows.

