University of California, Berkeley Physics 7B, Lecture 001, Spring 2009 (*Xiaosheng Huang*)

> **Midterm 1** Monday, 2/23/2009 6:00-8:00 PM

Name:	

SID:		
SID.		

D/L Section:_____

GSI: _____

Physical Constants:

Avogadro's number, *NA*: 6.02×10^{23} Gas Constant, *R*: 8.315J/mol·K Boltmann's Constant, *k_a*: 1.38×10^{-23} J/K Stefan-Boltzmann Constant, σ : 5.67×10^{-8} W/m²·K⁴ Specific heat for water: *c*=4.19×10³ J/kg·°C Heat of vaporization for water: *Lv*=22.6×10⁵ J/kg Heat of fusion for water: *LF*= 3.33×10^{5} J/kg Standard Temperature and Pressure (STP): *T*=273K, *P*=1atm=1.01×10⁵ Pa Atomic mass unit (1u): 1.6605×10^{-27} kg

<u>Note</u>: You are allowed one formula sheet (3½ by 5, double sided) and a calculator (without wireless capabilities). Do NOT just write down an answer in the answer box; show your steps. Formulaic answers may only involve the quantities given in a problem and constants. Good Luck!

#1	
#2	
#3	
#4	
Total	

1. (25 pts.) A spherical solid aluminum sphere with mass M, density ρ , specific heat c, and emissivity e, floats in the vacuum of intergalactic space. The sphere is initially (*t*=0) at temperature T_i .

a) How long does it take for the aluminum sphere to cool to the cosmic microwave background (CMB) temperature, T_0 , assuming $T_1 > T_0$? (For this part, ignore the radiation energy that the aluminum sphere will absorb from the (CMB)).

Formulaic Answer:

If $T_1 = 300$ K and $T_0 = 2.7$ K at t=0 and the mass of the aluminum sphere is M=100 kg, find the numerical value for the cooling time. For aluminum, e = 0.02, $\rho = 2.7 \times 10^3$ kg/m³, and $c = 0.90 \times 10^3$ J/kg•K.

Numerical Answer:

For parts b) and c), take into consideration that the aluminum sphere will absorb radiation energy from the CMB.

b) If the temperature of the aluminum sphere at time t is T, what is the <u>net</u> heat loss $(|Q_{net loss}|)$ of the aluminum sphere at this point?

Formulaic Answer:

<u>.</u>	$ Q_{net \ loss} =$		

c) Find a differential equation whose solution is T(t), the temperature of the aluminum sphere as a function of time, t.

Formulaic Answer:

2. (25 pts.) The mint flavor comes from menthol, which has a molecular mass of M=156.27, in atomic units. A bottle of mint oil at thermal equilibrium with the air in a room at STP is opened at one end of the room at t=0. Assume the menthol molecule is spherical in shape with a radius of R=0.5nm. Also assume the air in the room consists only of N_2 (ignore the O_2 part) and treat the N_2 as a spherical molecule with radius r=0.3nm. Ignore all intermolecular interactions except elastic collisions.

a) Find the number density (number of molecules per unit volume, N/V) of the N_2 in the room.

Numerical Answer:

b) Find the rms average speed, v_{rms} , for menthol molecule.

Formulaic Answer:

c) Derive an expression for the mean free path l for the menthol molecule in terms of the quantities given in the problem and N/V. (You don't need to worry about factors of $\sqrt{2}$.)

Formulaic Answer:

d) Given $x^2 = sl^2$, where x is the displacement, l the mean free path, and s the number of collisions the molecule has suffered traveling through x, find the time, t, it takes for a menthol molecule to reach a displacement of x on average.

Formulaic Answer:

e) Suppose the room is x=20 m across, find the numerical value for the average time, *t*, it takes for a menthol molecule to go from one end of the room to the other.

Numerical Answer:

f) (1 bonus pt.) Does your answer agree with what you know from experience? If not, why not?

3. (25 pts.) At a steam power plant, steam engines work in pairs, the heat output of the first one being the approximate heat input of the second. The operating temperatures of the first are T_1 = 800 °C and T_2 = 410 °C, and of the second T_3 = 400 °C and T_4 = 250 °C.

a) If the heat of combustion of coal is $b = 3.0 \times 10^7$ J/kg, at what rate must coal be burned if the plant is to put out p=1000 MW of power? Assume the efficiency of the engines is f = 50% of the ideal (Carnot) efficiency.

Formulaic Answer

Numerical Answer

b) Water is used to cool the power plant. How much heat per second $(\Delta Q_w/\Delta t)$ does the water have to absorb?

Formulaic Answer

Numerical Answer

c) If the water temperature is allowed to increase by no more than $\Delta T = 6$ °C, estimate how much water must pass through the plant per second. You may use $\Delta Q_w/\Delta t$ in your formulaic answer.

Formulaic Answer

Numerical Answer:

4. (25 pts.) An ideal gas in a thermally insulated box is separated by a thermally conducting partition into two parts. There are *n* moles of gas in each part. Initially, the gas in part A has temperature T_1 and volume V_1 and in B temperature T_2 and volume V_2 . The partition can slide without friction and the two parts have the same pressure, *P*.

a) What is the final temperature when thermal equilibrium is reached?

Formulaic Answer	

b) Calculate the entropy change for the gas in A and for the gas in B. (Please specify the reversible path that you choose for this calculation.)

Formulaic Answer

c) Calculate the entropy change of the combined system of A and B, ΔS_{total} .

Formulaic Answer

d) (4 bonus pts.) Show that $\Delta S_{\text{total}} \ge 0$.