# UNIVERSITY OF CALIFORNIA, BERKELEY 

MECHANICAL ENGINEERING
ME106 Fluid Mechanics

```
Mean: 144/200
Standard Deviation: 44
```

2nd Test, S10 Prof S. Morris

1. (65) In a manufacturing process, incompressible viscous polymer is squeezed between a stationary die, and descending mold. As a result, polymer is squeezed axisymmetrically from the gap; all 3 Cartesian components $v_{x}, v_{y}$ and $v_{z}$ of the velocity vector are non-zero. The $x$ and $y$ velocity components are given by the expressions

$$
v_{x}=k x\left(a z-z^{2}\right), v_{y}=k y\left(a z-z^{2}\right) . \quad \text { Mean: 50/65 }
$$

Using the continuity equation, namely
Standard Deviation: 18

$$
\frac{\partial v_{x}}{\partial x}+\frac{\partial v_{y}}{\partial y}+\frac{\partial v_{z}}{\partial z}=0
$$

and the boundary conditions on $v_{z}$, derive the expression giving $v_{z}$ as a function of $z, a$ and the (positive) speed $V$. (The parameter $k$ must not enter into your final answer.)


## SOLUTION.

Substituting $v_{x}, v_{y}$ into the continuity equation, we obtain

$$
2 k\left(a z-z^{2}\right)+\frac{\partial v_{z}}{\partial z}=0 . \quad \text { +25 points }
$$

Integrating from $z=0$ to $z$, and applying the b.c. $v_{z}=0$ on $z=0$, we find that


Applying the remaining b.c. $v_{z}=-V$ on $z=a$, and solving for $k$, we obtain


Subsituting for $k$ into Eq.(1), and rearranging, we find that

$$
\begin{equation*}
v_{z}=-V\left\{3\left(\frac{z}{a}\right)^{2}-2\left(\frac{z}{a}\right)^{3}\right\} . \tag{QED}
\end{equation*}
$$

2. (65) Mass conservation requires an incompressible fluid to decelerate as it flows through a sudden expansion in a duct, so that the pressure rises from AB to CD . Assuming that everywhere on AB , $p=p_{1}$, and that on CD, $p=p_{2}$, where $p_{1}-p_{2}=\rho V_{2}\left(V_{2}-V_{1}\right)$, and using the control volume shown, derive the expression giving the mechanical energy loss $\Delta E$ per unit mass flowing through the expansion in terms of $V_{1}$ and $V_{2}$. Your answer must show explicitly that $\Delta E \geq 0$.


## SOLUTION.

Balancing mechanical energy, we find that

$$
\dot{m}\left[\frac{1}{2} V^{2}+\frac{p}{\rho}\right]_{1}^{2}=-\dot{m} \Delta E . \quad \begin{aligned}
& +30 \text { points } \\
& (-5 \text { points if starting from Balance of Total Energy })
\end{aligned}
$$

(Terms representing shaft power and change in gravitational potential energy vanish identically.) Cancelling $\dot{m}$, and substituting for $p_{1}-p_{2}$, we obtain

$$
\frac{1}{2}\left(V_{2}^{2}-V_{1}^{2}\right)-V_{2}\left(V_{2}-V_{1}\right)=-\Delta E .+15 \text { points }
$$

Rearranging, we obtain the following:

$$
\begin{equation*}
\Delta E=\frac{1}{2}\left(V_{1}-V_{2}\right)^{2} \cdot \quad+20 \text { points } \tag{QED}
\end{equation*}
$$

The mechanical energy loss $\Delta E$ per unit mass is positive, as required by the second law of thermodynamics.

FULL CREDIT FOR CORRECT FINAL RESULT WITH COHERENT ARGUMENT
3. (70) Water flowing over a tall sluice gate in a river re-enters the river downstream almost vertically. Because there is a net flow of horizontal momentum out of the control volume illustrated, a horizontal force must act on the material within the control volume. As a result, water backs up to depth $H$ between the gate and the vertical jet; the horizontal force results because $H>h$. Assuming that the water of depth $H$ is stagnant, and that the flow downstream is purely horizontal with speed $V$, derive the equation giving $H$ in terms of $h, V$ and $g$.


Mean: 42/70
Standard Deviation: 24

## SOLUTION.

+ 20 points
The net flow rate of $x$-momentum out of control volume $a b c d$ is $\underline{(\rho V)(V h) /(\text { per unit length into the }}$ page).
The only forces exerted in the $x$-direction on matter in the control volume are the pressure forces exerted on surfaces $a b$ and $c d$.
On surface $a b$, the pressure at height $z$ above the river bottom is given by $p=p_{A}+\rho g(H-z)$. The $x$-component of force acting on a strip $\mathrm{d} z$ is $p \mathrm{~d} z$, and the resultant horizontal force is given by

$$
F_{a b}=\int_{0}^{H} p \mathrm{~d} z,=p_{A} H+\frac{1}{2} \rho g H^{2} .++10 \text { points }
$$

On surface $c d$, the pressure force acts to the left, and is given by $F_{c d}=-\int_{0}^{H} p \mathrm{~d} z$. In calculating the integral, we note that in the air for for $z>h, p=p_{A}$; in the water for $z<h, p=p_{A}+\rho g(h-z)$. Evaluating the integral, we find that

$$
F_{c d}=-p_{A} H-+\frac{1}{2} \rho g h^{2} .++10 \text { points }
$$

The resultant rightward force is $F_{a b}+F_{c d}=\frac{1}{2} \rho g\left(H^{2}-h^{2}\right)$. We note that this is independent of $p_{A}$; equally, we could have used the gauge pressure.
The balance of $x$-momentum is as follows:


Solving for $H$ we find that

$$
\begin{equation*}
H=h \sqrt{1+2 \frac{V^{2}}{g h}} \tag{QED}
\end{equation*}
$$

CROSS OUT ALL BLANK SPACES
FULL CREDIT FOR CORRECT FINAL RESULT WITH COHERENT ARGUMENT

