Prob. 1

$$
\Delta P=R Q
$$

Hagen - Poxisell

$$
Q=\frac{\pi}{128 \mu} \frac{\Delta P}{\Delta x} \omega^{4}
$$

a) $\quad \frac{\Delta P}{Q}=R=\frac{128 \mu}{\pi 1} \frac{L}{D^{4}}$

$$
\begin{equation*}
\text { Tube 1. } \quad R_{1}=\frac{128}{\pi} \frac{\mu}{\left(\frac{L_{1}}{D_{1}^{4}}+\frac{L_{2}}{D_{2}^{4}}\right), ~(1)} \tag{5}
\end{equation*}
$$

$$
\text { Tube 2. } \quad R_{2}=\frac{128}{\pi} \mu \frac{\left(L_{1}+L_{2}\right)}{0_{1}^{4}}
$$

a. know $\Delta P$ find $Q$

$$
\begin{align*}
& Q_{1}=\frac{\Delta P}{R_{1}}=\Delta P \cdot \frac{\pi}{12 \mu\left(\frac{L_{1}}{D_{1}^{4}}+\frac{L_{2}}{D_{2}^{4}}\right)} \\
& =\frac{\Delta p \cdot \pi \cdot D_{1}^{4} D_{2}^{4}}{12^{8} \mu\left(L_{1} D_{2}^{4}+L_{2} D_{1}^{4}\right)}  \tag{5}\\
& Q_{2}=\frac{\Delta P}{R_{2}}=\frac{\Delta P \cdot \pi \cdot D_{1}^{4}}{128 \mu\left(L_{1}+L_{L}\right)} \\
& a_{2}>a_{1} \quad \Rightarrow \quad \frac{a_{1}}{a_{2}} \leqslant 1 \\
& \frac{a_{1}}{a_{c}}=\frac{\Delta p \cdot \pi}{128 \mathbb{R}^{2}} \frac{D_{1}^{4} D_{2}^{4}}{\left(\angle 1 D_{2}^{4}+L_{2} D_{1}^{4}\right)} \cdot \frac{12 \delta \cdot \alpha^{2}\left(L_{1}+L_{2}\right)}{D p \cdot W^{4} \cdot D_{1}^{4}} \\
& =\frac{D_{1}^{4} D_{2}^{4}\left(L_{1}+L_{2}\right)}{D_{1}^{4}\left(L_{1} D_{2}^{4}+L_{2} D_{1}^{4}\right)}
\end{align*}
$$

+ Prob. 1

$$
\text { if } L_{2}=0 \quad \Rightarrow \quad \frac{Q_{1}}{Q_{2}}=1 \quad \text { makes sense }
$$

$$
\text { if } L_{1}=0 \Rightarrow \frac{Q_{1}}{Q_{2}}=\frac{D_{2}^{4} L_{2}}{D_{1}^{4} L_{2}}=\frac{D_{2}^{4}}{D_{1}^{4}}
$$

kaon $D_{2}<0, \Rightarrow \frac{Q_{1}}{Q_{2}} \leqslant 1$
b. given $\Delta P$ whil tuber has a higla vemont

$$
\begin{align*}
V_{\max } & \approx \bar{V} \\
\bar{V} & =\frac{4 Q}{\pi D_{2}^{2}} \\
\bar{v}_{1}= & \frac{4 Q_{1}}{\pi D_{2}^{2}}=\frac{4}{\pi D_{2}^{2}} \frac{\Delta p \pi}{12 P \mu} \frac{D_{1}^{4} D_{2}^{4}}{\left(L_{1} D_{2}^{4}+L_{2} D_{1}^{4}\right)} \\
= & \frac{\Delta P}{32 \mu} \frac{D_{1}^{4} D_{2}^{2}}{\left(L_{1} D_{2}^{4}+L_{2} D_{1}^{4}\right)}  \tag{5}\\
\bar{V}_{2}= & \frac{4 Q_{2}}{\pi D_{1}^{2}}=
\end{align*}
$$

as $\mathrm{L}_{2} \rightarrow 0$

$$
\begin{align*}
& \bar{v}_{1}=\frac{\Delta p}{32 \mu} \frac{D_{1}^{4} D_{2}^{2}}{L_{1} D_{2}^{4}}=\frac{\Delta p}{32} \frac{\Delta}{L_{1}} \frac{D_{1}^{4} D_{2}^{2}}{D_{2}^{2}} \\
& \bar{\nu}_{2}=\frac{\Delta p}{32 \mu} \frac{D_{1}^{2}}{L_{1}} \\
& \frac{\bar{v}_{1}}{\bar{\nu}_{2}}=\frac{D_{1}^{4}}{D_{2}^{2}} \frac{L}{D_{1}^{2}}=\frac{D_{1}^{2}}{D_{2}^{2}}>1 \tag{5}
\end{align*}
$$

if $L, \rightarrow 0$

$$
\begin{aligned}
& \bar{v}_{1}=\frac{\Delta P}{32 \mu} \frac{D_{1}^{4} D_{2}^{2}}{L_{2} D_{1}^{4}}=\frac{\Delta P}{32 \mu L_{2}} O_{2}^{2} \\
& \bar{v}_{2}=\frac{\Delta P}{32 \mu} \frac{D_{1}^{2}}{L_{2}} \\
& \frac{\bar{v}_{1}}{\bar{v}_{2}}=\frac{D_{2}^{2}}{D_{1}^{2}}
\end{aligned}
$$

$$
\begin{array}{ll}
\frac{\bar{V}_{1}}{\bar{v}_{2}}<1 & A \gamma \operatorname{son} \\
\bar{V}_{1}=\bar{V}_{2}
\end{array} \left\lvert\, \begin{array}{ll}
\frac{D_{1}^{4} D_{2}^{2}}{L_{1} D_{2}^{4}+L_{2} D_{1}^{4}} \cdot \frac{\left(L_{1}+L_{2}\right)}{D_{1}^{2}}
\end{array}\right.
$$

$$
=\frac{D_{1}^{2} D_{2}^{2}\left(L_{1}+L_{2}\right)}{L_{1} D_{2}^{4}+L_{2} D_{1}^{4}}
$$

There are maltiph soh's $/ \mathrm{D}_{1} \in \mathrm{D}_{2}$
c. if $Q$ is fixed
$\Rightarrow Q_{1}=Q_{2}$ so they Goth han th soven flow rat
d. Tube 1 has a high Vmax

$$
\text { by a lacka } \frac{D_{1}^{2}}{D_{2}^{2}}
$$

pressure $\Rightarrow Q_{2}>Q_{1}$
Varax, 1 Vanx $V_{\text {ae }}$ unigue

Hi Dorian!
So the shortest cut for problem 1 b) a. is knowing that $\overline{u_{z}}=\frac{1}{2} \cdot u_{\max }$. This can be derived as follows:

The reduces NV -equation for the round pipe case on polar cylinder coordinates is:
$\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u_{z}}{\partial r}\right)=\frac{1}{\mu} \frac{\partial p}{\partial z}$
The solution (integrate twice) of which is given by: $u_{z}=\frac{1}{4 \mu} \frac{\partial p}{\partial z} r^{2}+c_{1} \ln r+c_{2}$

Since at $r=0$ (middle of the tube) the velocity cannot diverge $c_{1}=0$. The no-slip boundary conditions at $r=R$ (pipe wall) lead to $c_{2}=-\frac{1}{4 \mu} \frac{\partial p}{\hat{c} z} R^{2}$.
$\Rightarrow u_{z}=-\frac{1}{4 \mu} \frac{\partial p}{\partial z}\left(R^{2}-r^{2}\right)$
The velocity is obviously highest in the middle at $r=0: \quad u_{z \max }=-\frac{1}{4 \mu} \frac{\partial p}{\partial z} R^{2}$

The average velocity can be simply obtained by integration over the pipe radius and dividing by the cross-sectional area of the pipe:
$\overline{u_{z}}=\frac{1}{\pi R^{2}} \int_{0}^{R} u_{z} \cdot 2 \pi r d r=\frac{1}{\pi R^{2}} \int_{0}^{R}\left[-\frac{1}{4 \mu} \frac{\partial p}{\partial z}\left(R^{2}-r^{2}\right)\right] \cdot 2 \pi r d r=\frac{1}{2} \cdot\left[-\frac{1}{4 \mu} \frac{\partial p}{\partial z} R^{2}\right]=\frac{u_{z \max }}{2}$.
Many students remembered actually from their basic fluid mechanics course that $\overline{u_{2}}=\frac{1}{2} \cdot u_{z \max } \ldots$ This makes the problem really simple since $\bar{u}=\frac{Q}{\pi R^{2}}$ where $Q$ is given by $Q=\frac{\Delta P}{\mathcal{R}}$ from Ohm's law of fluid mechanics (an expression $\mathcal{R}$ was to be derived in 1a) from Hagen-Poiseuille equation).

Combine all this and you'll get: $u_{\text {max }}=2 \cdot \frac{1}{\mathcal{R}} \cdot \frac{1}{\pi R^{2}} \cdot \Delta P$

Thus, deciding in which tube the maximum exit velocity is higher comes down to evaluating for which tube the product of the above expression is larger as a function of parameters. Please note:

- For the simple tube an expression for $\mathcal{R}$ is just the result of 1a).
- One has to treat the composite tube simply as two resistors $n$ series by analogy to electronics.
- When evaluating $u_{z \text { cxit }}$ using the above expression for the simple tube $\Delta P$ is just the "given pressure drop". For the composite tube one has to use the pressure drop across the second segment only. This pressure drop can be calculated from the pressure drop across the entire system by using the "voltage divider rule" by analogy to electronics: $\Delta P_{2}=\frac{\mathcal{R}_{2}}{\mathcal{R}_{4}+\mathcal{R}_{2}}$.
+ problen 3
parcons

$$
\begin{aligned}
& u(\mathrm{~m} / \mathrm{s}) \\
& h(\mathrm{~m}) \\
& l(\mathrm{~m}) \\
& D\left(\mathrm{n}^{2} / 2\right)
\end{aligned}
$$

$$
\begin{align*}
& \pi_{1}=\frac{u(\mathrm{~m} / \mathrm{s})}{\partial(\mathrm{m} / \mathrm{s})} h(\mathrm{n})=\frac{2 \pi h}{B}  \tag{5}\\
& \pi_{2}=\frac{h}{l}
\end{align*}
$$

$$
\frac{u h}{\|}=g\left(\frac{h}{l}\right)
$$

$$
=f\left(\frac{l}{n}\right)
$$

assun $f$ is lincan $\Rightarrow l$ iscean $u$ incem

$$
\begin{align*}
& \frac{u h}{L}=c \frac{l}{h}  \tag{5}\\
& u=c \frac{l l}{h^{2}}
\end{align*}
$$

