
Prof. Adrian Lee Physics 7B Fall 07 Final Exam
Solutions

Problem 1

a

The efficiency of the engine is a simple computation from the definition:

er =
W

Qin

=
600 J

1600 J
=

3

8
. (1)

(“r” stands for “real” here.) The Carnot engine efficiency depends on the heat reservoir
temperatures:

eC =
TH − TL

TH

=
850 K − 400 K

850 K
=

9

17
≈ 0.53 . (2)

(“C” stands for “Carnot” here.) Notice that the Carnot efficiency is bigger than the
real efficiency.

b

The total entropy change of the universe consists of the entropy change of the engine
and the entropy change of the environment. The engine itself is running through a cycle,
so its entropy doesn’t change because entropy is s state function. The environment,
however, is not running through a cycle. Each of the heat reservoirs exchanges heat
with the engine, but even though the reservoirs are losing/gaining heat they remain at
the same temperature because they’re so big. So we can use the fact that ∆S = Q/T
when temperature is constant. The high temperature reservoir loses heat, and so loses
entropy, while the low temperature reservoir gains heat (and entropy). In equations,
we have

∆Suniverse = ∆Sengine + ∆Senv = ∆Senv (3)

= ∆SH + ∆SL = −Qin

TH

+
Qout

TL

(4)

= −Qin

TH

+
Qin −W

TL

= −1600 J

850 K
+

1600 J − 600 J

400 K
(5)

≈ 0.62 J/K . (6)
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c

For a Carnot engine, we can use the same procedure as before except we will also use
the relation W = QineC which relates the work to the heat input. Note that the Q and
W appearing here are not necessarily the same as those above.

∆Suniverse = ∆Sengine + ∆Senv = ∆Senv (7)

= ∆SH + ∆SL = −Qin

TH

+
Qout

TL

(8)

= −Qin

TH

+
Qin −W

TL

= −Qin

TH

+
Qin −QineC

TL

(9)

= Qin

(
− 1

TH

+
1− eC
TL

)
= Qin

(
− 1

TH

+
1

TL

− 1

TL

+
1

TH

)
(10)

= 0 . (11)

d

The difference in work done, assuming they have the same energy input Qin, is equal to
Qin(eC− er). We can also go back to part b and use the formulas we got for the entropy
change in the universe for a cycle of the real engine.

∆Suniverse = −Qin

TH

+
Qin −W

TL

(12)

= −Qin

TH

+
Qin −Qiner

TL

(13)

= Qin

(
− 1

TH

+
1− er
TL

)
. (14)

Now we have

TL∆Suniverse = Qin

(
−TL

TH

+ 1− er
)

= Qin(eC − er) = ∆W . (15)

Problem 2

Throughout this problem we will normalize our potentials so that the negative side of
the applied potential difference is at V = 0.

a

With S open, the capacitors will charge up and then there will be no current through
them. So all of the current goes through the resistors. The total current is

I =
V

R1 +R2

. (16)
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There is a voltage drop across R2 between point a and the point of zero potential. So
the potential at a must be equal in magnitude to the potential drop across R2:

Va =
R2

R1 +R2

V . (17)

b

By charge conservation, the charges on the two capacitors is the same; call it Q. Then
the Loop Law through the capacitors says

V =
Q

C1

+
Q

C2

. (18)

The potential at b must be equal in magnitude to the potential drop across C2, so we
get

Vb =
Q

C2

=
C−1

2

C−1
1 + C−1

2

V . (19)

c

After the switch is closed, charge can escape so we are no longer allowed to say that the
capacitors carry equal charge. However, once they are fully charged to their new totals,
there will be no current through them. So the resistors still carry all of the current,
and we still have the loop law

I =
V

R1 +R2

. (20)

Now the potential at b is the same as that at a, and is equal the potential drop across
R2:

Vb =
R2

R1 +R2

V . (21)

d

After the switch is thrown, we can no longer say that the charges on the two capacitors
are equal. However, any difference in charge arises because some charge escaped by
flowing across the switch. The total charge that flowed through the switch is then
equal to the difference in the charges of the two capacitors after equilibrium is reached.
Let the respective charges of the capacitors be Q1 and Q2. Since a and b are connected,
the potential drop across R1 has to equal that across C1:

IR1 =
Q1

C1

. (22)

Similarly, the potential drop across R2 has to equal that across C2:

IR2 =
Q2

C2

. (23)

Now we can easily compute the charge difference:

Q1 −Q2 = IR1C1 − IR2C2 =
R1C1 −R2C2

R1 +R2

V . (24)
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Problem 3

The mutual inductance M can be computed in one of two ways. First, if we place
a current I1 in the larger solenoid and measure the magnetic flux Φ2 in the smaller
solenoid, we should have

Φ2 = MI1 . (25)

The other way we can compute it is to place a current I2 in the smaller solenoid and
measure the magnetic flux Φ2 in the larger solenoid. Then we have the equation

Φ1 = MI2 . (26)

These methods are equivalent and give the same answer. We will illustrate both.
First let us imagine putting a current I1 in the larger solenoid. Then there will be

a constant magnetic field
B = n1µ0I1 (27)

parallel to the direction of the solenoid and throughout the interior. This interior
includes the smaller solenoid. If we restrict ourselves to a length ` of the small solenoid,
which contains N2 loops of wire, the magnetic flux is

Φ2 =

∫
~B · d ~A = N2BA2 = N2n1µ0I1πr

2
2 = µ0n1n2πr

2
2I1` . (28)

Comparing to the defining relation for M , we find that the mutual inductance per
length is

M/` = µ0n1n2πr
2
2 . (29)

Now we will compute the same thing using the other method. We let current I2 run
in the smaller loop. This generates a magnetic field

B = n2µ0I2 (30)

parallel to the direction of the solenoid and throughout the interior (of the small
solenoid). The magnetic field is zero outside of the small solenoid, so when we compute
Φ1 over a length ` of the big solenoid, the integral vanishes except over the cross-section
of the small solenoid:

Φ1 =

∫
~B · d ~A = N1BA2 = N1n2µ0I2πr

2
2 = µ0n1n2πr

2
2I2` . (31)

We find the same equation for M/` .

Problem 4

a

The induced current will be proportional to the changing flux through the small ring,
and will be in a direction such that the magnetic field it creates opposes the change
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in the external magnetic field. Since the current in the big loop is going clockwise
and getting stronger, we know that the current in the small loop must be induced in
a counterclockwise direction. Since the current in the big loop is changing linearly, its
time derivative will be constant. Thus the current in the small loop should be constant
over the range 0 < t < T . So the graph should be a negative constant from 0 < t < T .

b

Resistance is proportional to the length of the wire (2πr) and inversely proportional to
the area:

R =
2πrρCu

a
. (32)

c

The Biot-Savart rule for the magnetic field generated by a segment of wire d~̀ with
current I is

B =
µ0

4π

∫
Id~̀× r̂
r2

, (33)

where ~r is a vector pointing from the line element to the place where the magnetic field
is to be computed. In this case, the line elements are all tangent to the big circle and
the vector ~r has length 10r and points to the center of the circle. The current, and
hence the integral, goes clockwise around the circle. The right-hand-rule for the cross
product tells us that the magnetic field points “into the page”. The cross product does
not contribute any sinφ factors because the radial and tangent directions of the circle
are perpendicular. To evaluate the integral we will write d` = 10rdθ and integrate the
angle θ from 0 to 2π. For the magnitude of B we have

B =
µ0

4π

∫ 2π

0

I(10rdθ)

(10r)2
=
µ0I

20r
=

3µ0I0
40r

. (34)

In the last equation we substituted I = 1.5I0.

d

Assuming the B field is uniform over the small circle, the magnetic flux is

Φ(t) = πr2B(t) =
πrµ0

20
I(t). (35)

The EMF is given by the derivative of the flux:

E = −dΦ

dt
= −πrµ0

20

I0
T
. (36)

The derivative of I is just I0/T because I changes linearly by I0 over time T . The result
is independent of time, so it doesn’t matter when we evaluate it. Ohm’s Law gives us
the current:

Ismall ring = E/R = −πrµ0

20

I0
RT

. (37)

The negative sign just means the current is running counterclockwise.
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Problem 5

a

We begin by computing the electric field for r > 4R by Gauss’s Law. Our Gaussian
surface will be a concentric cylinder of radius r > 4R and length `� L. By symmetry
the electric field can only point radially and the magnitude can only depend on the
radius. So the “caps” of the Gaussian surface have zero electric flux, and the flux out
of the side is easy to compute:∮

~E · d ~A = E(r)

∫
side

dA = 2πr`E(r) . (38)

The enclosed charge comes from both the inner cylinder and the outer cylinder. Our
Gaussian surface encloses a fraction `/L of the total charge of both surfaces, so Qenc =
Q`/L. Putting this together with Gauss’s Law, we find

E(r) =
Qenc

2πr`ε0
=

Q

2πrLε0
. (39)

Note that the net charge is positive, so the electric field points outward. That means
the particle, which is negative, should be moving faster at the outer cylinder than where
it starts. To compute the speed va, we simply add the work done by the electric field
to the kinetic energy:

1

2
Mv2

a =
1

2
Mv2 +

∫ 4R

5R

~F · d~r =
1

2
Mv2 − q

∫ 4R

5R

~E · d~r (40)

=
1

2
Mv2 − q

∫ 4R

5R

Q

2πrLε0
dr =

1

2
Mv2 +

qQ

2πLε0
ln

5

4
. (41)

So the new speed is

va =

√
v2 +

qQ

MπLε0
ln

5

4
. (42)

b

We are going to repeat the method of part (a). We need to find the electric field for
R < r < 4R first. Again, we will use Gauss’s Law for a concentric cylinder of radius
r, this time with R < r < 4R. I will not repeat the analysis, but merely note that the
charge enclosed is twice as large as it used to be because we are not enclosing the outer
cylinder. So we get

E(r) =
Qenc

2πr`ε0
=

Q

πrLε0
. (43)

Now we can compute the new speed vb by finding the work done on the particle since
it entered the outer cylinder:

1

2
Mv2

b =
1

2
Mv2

a +

∫ R

4R

~F · d~r =
1

2
Mv2

a − q
∫ R

4R

~E · d~r (44)

=
1

2
Mv2

a − q
∫ R

4R

Q

πrLε0
dr =

1

2
Mv2

a +
qQ

πLε0
ln 4 . (45)
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So we conclude

vb =

√
v2
a +

2qQ

MπLε0
ln 4 . (46)

c

The speed va will be unchanged if a dielectric is added. There were only two things
which determined the answer to part (a): symmetry and total charge. The dielectric
will not change either of those if the entire dielectric is contained within our Gaussian
surface (which it is).

d

vb will be smaller in the presence of the dielectric, because the effective electric field in
a dielectric is smaller than in vacuum, thus leading to a smaller amount of work done
on the particle. Recall that in the microscopic picture of a dielectric in an electric field
the surfaces of the dielectric become charged. This induced surface charge will partially
cancel the charges on the cylinders. However, since the dielectric is electrically neutral
overall, the total charge on both cylinders together does not change. That’s why in
part (c) we said that there was no change in va. But now we care about the effective
charge on the inner cylinder by itself, which is lowered in the presence of the dielectric.
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