Midterm 1 Solutions

2/26/2010

1. (a) Answer: iii and vii

See problem set 3 question 2.b).
Scoring: $7 x-3.5 y$, where x are the number of correct answers and y are the number of incorrect answers. Note that negative scores were treated as 0 .
(b) Answer: ii and v

See problem set 3 question 2.b).
Notice that multiplying a wave function by i does not change the wave function.
Scoring: $7 x-4 y$
(c) Answer: ii, iv, and vi Remember that for any operator we have,

$$
\frac{d\langle\hat{G}\rangle}{d t}=\frac{1}{i \hbar}\langle[\hat{G}, \mathscr{H}]\rangle
$$

This equation was given to you at the beginning of the exam. Of course, \mathscr{H} commutes with itself and so its expectation value is time-independent.

You can calculate the uncertainty in \mathscr{H} which is K.
Problem set 3 question 2.c) provides the final answer.
Scoring: $6 x-6 y$
(d) Answer: iii, iv, v, and vii
$|A\rangle$ and $|B\rangle$ are orthonormal and the action of \hat{C} on both states is given. Using this information you can show that iii and iv are true.
You know the action of \hat{C} and \mathscr{H} on both $|A\rangle$ and $|B\rangle$ so you can create the matrix representation of both operators in the $|A\rangle|B\rangle$ basis which gives,

$$
\begin{gathered}
\mathscr{H}=\left(\begin{array}{cc}
\epsilon & -K \\
-K & \epsilon
\end{array}\right) \\
\hat{C}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
\end{gathered}
$$

And you can show that these commute with each other.
Using the matrix form of \hat{C} you can show that vii is true.
Scoring: $4.5 x-4.5 y$
2. (a) Answer: i, iv and v

To be an odd function the function must be antisymmetric about the x axis which means that it must have a node at $x=0$.

Using the Virial theorem iv can be shown to be true.
See problem set 3 question 5 which shows that,

$$
\Delta x=\sqrt{\frac{\hbar\left(n+\frac{1}{2}\right)}{m \omega}}
$$

Thus v is true.
Scoring: $6 x-5 y$
(b) Answer: ii, v and vi

You can use the fact that $\langle 1| x|0\rangle=\sqrt{\hbar / 2 m \omega} e^{i \omega t}$ to show that vi is true.
Knowing that vi is true shows that ii is true.
The Virial theorem shows that $\langle 1| x^{2}|1\rangle=3 \hbar / 2 m \omega$ and $\langle 0| x^{2}|0\rangle=\hbar / 2 m \omega$ while we know that the cross terms are zero because it would be an odd function, $|1\rangle$, times an even function, x^{2}, times an even function, $|0\rangle$, which is odd overall. See Problem set 4 question 3. So v is true.

Scoring: $6 x-6 y$
Please check that your scores are calculated correctly.

Figure 1: Midterm grade distribution. The mean/median is 50 and the standard deviation is 20.

