Solutions to the Second Midterm Exam - Multivariable Calculus

Math 53, November 5, 2009. Instructor: E. Frenkel

1. The height of a mountain above the point (x, y) is given by the formula $h(x, y)=$ $x^{2}+\sin ^{2}(x y)$. A climber is standing on the mountain at the point $(1,0,1)$.
(a) In the direction of what unit vector should the climber move (with respect to the x, y coordinate plane) so as to achieve the steepest ascent?

We find: $h_{x}=2 x+2 \sin (x y) \cos (x y) y, h_{y}=2 \sin (x y) \cos (x y) x$. Hence the gradient at the point $(1,0)$ is $\vec{\nabla} h(1,0)=\langle 2,0\rangle$. The steepest ascent rate is achieved in the direction of the unit vector $\langle 1,0\rangle$.
(b) In the direction of what unit vectors should the climber move to achieve the ascent rate equal to 50% of the steepest ascent rate?

The ascent rate in the direction of a unit vector u equals $\mathbf{u} \cdot \vec{\nabla} h(1,0)=|\vec{\nabla} h(1,0)| \cos \theta$, where θ is the angle between \mathbf{u} and $\vec{\nabla} h(1,0)$.

In order to achieve the ascent rate equal to 50% of the steepest ascent rate the climber should move in a direction that has the angle θ such that $\cos \theta=1 / 2$. Therefore $\theta= \pm \pi / 3$, and we get $\mathbf{u}=\langle 1 / 2, \pm \sqrt{3} / 2\rangle$.
2. Find the absolute maximum and minimum values of the function $f(x, y)=x^{2}-$ $y^{2}+x^{2} y+4$ on the set $D=\{(x, y)| | x|\leq 1,|y| \leq 1\}$. Find the points at which these values are attained.

First, we find the critical points on the interior of this set. Setting $f_{x}=2 x+2 x y=0$, $f_{y}=-2 y+x^{2}=0$, we obtain one solution: $x=0, y=0$, which is in D (otherwise, $x^{2}=-2$, which cannot be solved).

Next, we restrict our function to each segment of the boundary: (1) $x=1$: $f \mapsto$ $-y^{2}+y+5$. Its derivative is $-2 y+1$, and hence $y=1 / 2$. (2) $x=-1$: obtain the same function, so again $y=1 / 2$. (3) $y=1: f \mapsto 2 x^{2}+5$. Its derivative is $4 x$, and hence $x=0$. (4) $y=-1: f \mapsto 3$, and the derivative is identically equal to 0 . So we have to consider all points of this segment.

Including the corners, we assemble the following list: $(0,0),(1,1 / 2),(-1,1 / 2),(0,1)$, $\{(x,-1)||x| \leq 1\},(1,1),(-1,1)$. Evaluating the function at all of these points, we find that the maximum value $5 \frac{1}{4}$ is attained at the points $(1,1 / 2)$ and $(-1,1 / 2)$, and the minimal value 3 is attained at $(0,1)$ and on the segment $\{(x,-1)||x| \leq 1\}$.
3. Find the maximum and minimum values of the function $f(x, y, z)=x y z$ subject to the constraint $x^{2}+2 y^{2}+3 z^{2}=6$. At how many points is each of these values attained? List all of these points.

We use Lagrange method. The system of equations $\vec{\nabla} f=\lambda \vec{\nabla} g, g=k$ reads $y z=$ $2 \lambda x, x z=4 \lambda y, x y=6 \lambda z, x^{2}+2 y^{2}+3 z^{2}=6$. The first three equations imply that $x^{2}=x y z / 2 \lambda, y^{2}=x y z / 4 \lambda, z^{2}=x y z / 6 \lambda$. Hence $y^{2}=x^{2} / 2, z^{2}=x^{2} / 3$. Substituting in the last equation, we find that $3 x^{2}=6$. Hence $x= \pm \sqrt{2}$, and so $y= \pm 1, z= \pm \sqrt{2} / \sqrt{3}$. But the signs can be chosen independently! The maximum value is thus $2 / \sqrt{3}$, achieved at the points of the form $(\pm \sqrt{2}, \pm 1, \pm \sqrt{2} / \sqrt{3})$, with the number of - signs even (there
are 4 such points), and at the minimum value if $-2 / \sqrt{3}$, achieved at the points of the same form with with the number of - signs odd (there are 4 of those).
4. Evaluate the integral

$$
\int_{0}^{1} \int_{\sqrt[3]{y}}^{1} \sqrt{x^{4}+1} d x d y
$$

The region of integration is

$$
\{(x, y) \mid 0 \leq y \leq 1, \sqrt[3]{y} \leq x \leq 1\}=\left\{(x, y) \mid 0 \leq x \leq 1,0 \leq y \leq x^{3}\right\}
$$

Changing the order of integration, obtain the integral

$$
\int_{0}^{1} \int_{0}^{x^{3}} \sqrt{x^{4}+1} d y d x=\int_{0}^{1} x^{3} \sqrt{x^{4}+1} d x=\left.\frac{1}{6}\left(x^{4}+1\right)^{3 / 2}\right|_{0} ^{1}=\frac{1}{6}(2 \sqrt{2}-1)
$$

5. A lamina occupies the region in the first quadrant on the $x y$ plane bounded by the ellipse $25 x^{2}+4 y^{2}=1$. Its density of mass function is given by the formula $\cos \left(25 x^{2}+\right.$ $\left.4 y^{2}\right)$. Find the mass of the lamina.

We need to evaluate the following integral:

$$
\iint_{R} \cos \left(25 x^{2}+4 y^{2}\right) d A
$$

Make the change of variables: $x=\frac{1}{5} r \cos \theta, y=\frac{1}{2} r \sin \theta$. The absolute value of the Jacobian for this change equals $\frac{r}{10}$ (since $r \geq 0$). Hence in the r, θ-coordinates the integral becomes:

$$
\frac{1}{10} \int_{0}^{\pi / 2} \int_{0}^{1} \cos \left(r^{2}\right) r d r d \theta=\frac{\pi}{40} \sin (1)
$$

6. Find the volume of the solid that lies within the sphere $x^{2}+y^{2}+z^{2}=2$ and is confined between the $y z$ plane and the cone $x=\sqrt{y^{2}+z^{2}}$.

Observe that the volume of this solid is equal to the volume of the solid E that lies within the sphere $x^{2}+y^{2}+z^{2}=2$ and is confined between the $x y$ plane and the cone $z=\sqrt{x^{2}+y^{2}}$. The latter is equal to the triple integral of the function 1 over E. To evaluate it, we use spherical coordinates. We obtain

$$
\int_{\pi / 4}^{\pi / 2} \int_{0}^{2 \pi} \int_{0}^{\sqrt{2}} \rho^{2} \sin \phi d \rho d \theta d \phi=\frac{1}{3} 2 \sqrt{2} \cdot 2 \pi \cdot \frac{1}{\sqrt{2}}=\frac{4 \pi}{3} .
$$

