
CS70 Discrete Mathematics and Probability Theory, Fall 2009

Midterm 1
7:00-9:00pm, 8 October

Notes: There arefive questions on this midterm. Answer each question part in the space below it, using the
back of the sheet to continue your answer if necessary. If you need more space, use the blank sheet at the end.
In both cases, be sure to clearly label your answers!None of the questions requires a very long answer,
so avoid writing too much! Unclear or long-winded solutions may be penalized.The approximate credit
for each question part is shown in the margin (total 100 points). Points are not necessarily an indication of
difficulty!

Your Name: Your Section:

Person on left: Person on right:

For official use; please do not write below this line! For official use; please do not write below this
line!

Q1 16

Q2 20

Q3 20

Q4 14

Q5 15 + 15

Total 100

[exam starts on next page]



1. [Propositional Logic] [16 pts]

A. (8 pts - 2 pts each) State whether the following equivalences are valid or invalid. There is no need to
justify your answers. Guess at your own risk - wrong answers will be awarded negative credit.

I. ¬∀n [(P (n) ∧Q(n)) ⇒ ¬R(n)] ≡ ∃n [P (n) ∧Q(n) ∧R(n)]

Solution: This equivalence is valid. We can show this by applying DeMorgan’s law and using the
fact thatP ⇒ Q ≡ ¬P ∨Q.

¬∀n [(P (n) ∧Q(n)) ⇒ ¬R(n)] ≡ ¬∀n [¬(P (n) ∧Q(n)) ∨ ¬R(n)]
≡ ∃n¬ [¬(P (n) ∧Q(n)) ∨ ¬R(n)]
≡ ∃n [(P (n) ∧Q(n)) ∧R(n)]
≡ ∃n [P (n) ∧Q(n) ∧R(n)]

II. ∀m∃n [∀l(A(m, l) ∧B(n, l)) ⇒ C(m,n)] ≡ ∀m∃n [¬C(m,n) ⇒ ∃l(¬A(m, l) ∨ ¬B(n, l))]

Solution: This equivalence is valid. We can show this by using the fact that an implication and
its contrapositive are equivalent, that isP ⇒ Q ≡ ¬Q ⇒ ¬P , and by using DeMorgan’s law.

∀m∃n [∀l(A(m, l) ∧B(n, l)) ⇒ C(m,n)] ≡ ∀m∃n [¬C(m,n) ⇒ ¬(∀l(A(m, l) ∧B(n, l)))]
≡ ∀m∃n [¬C(m,n) ⇒ ∃l(¬A(m, l) ∨ ¬B(n, l))]

III. ∀m∀n [P (m) ⇒ Q(n)] ≡ ∀n ∀m [Q(n) ⇒ P (m)]

Solution: This equivalence is invalid. That is because an implication and its converse are not
necessarily equivalent, that isP ⇒ Q 6≡ Q ⇒ P .

IV. ¬∀l ∃m ∀n [(P (m) ∧Q(l)) ∨R(m,n, l)] ≡ ∃l ∀m ∃n [(¬P (m) ∧ ¬Q(l)) ∨ ¬R(m,n, l)]

Solution: This equivalence is invalid. It involves an incorrect application of DeMorgan’s law (it
does not flip the or into an and).

¬∀l ∃m ∀n [(P (m) ∧Q(l)) ∨R(m,n, l)] ≡ ∃l ∀m ∃n¬ [(P (m) ∧Q(l)) ∨R(m,n, l)]
≡ ∃l ∀m ∃n [¬(P (m) ∧Q(l)) ∧ ¬R(m, n, l)]
≡ ∃l ∀m ∃n [(¬P (m) ∨ ¬Q(l)) ∧ ¬R(m, n, l)]
6≡ ∃l ∀m ∃n [(¬P (m) ∧ ¬Q(l)) ∨ ¬R(m, n, l)]

B. (8 pts - 2 pts each) For nonnegative integersx andy, let P (x, y) be the proposition that “x + y > xy”
. Which of the following statements are true? Give a one line proof or a counterexample.

I. ∀x∃yP (x, y)

Solution: This statement is true. A simple way to show this is to say that for every value ofx, we
pick y = 1. Then,P (x, y) is always true sincex + 1 > x for all x.



II. ∃x∃yP (x, y)

Solution: This statement is true. To show this we just need to findx andy that satisfy the property
P (x, y). We can just pickx = y = 1; then we can see that1 + 1 = 2 > 1 = 1 · 1.

III. ∃x∀yP (x, y)

Solution: This statement is true. A simple way to show this is to say that we pickx = 1. Then,
for every value ofy, P (x, y) is true sincey + 1 > y for all y.

IV. ∀x∀yP (x, y)
Solution: This statement is false. A simple way to show this is to pick a counterexample. We
pick x = y = 3. Then we have6 = 3 + 3 6> 9 = 3 · 3.



2. [Proofs.] [20 pts]

A. (10 pts) LetDn be the number of ways to tile a2× n checkerboard with dominos, where a domino is
a 1 × 2 piece. Prove thatDn ≤ 2n for all positive integersn. (Find a recurrence relation forDn. No
need to give a proof. Then inductively prove the upper bound onDn.)

Note that dominos can only be placed exactly aligned with checkerboard squares, and cannot be placed
diagonally.

Solution: First we need to come up with a recurrence relation forDn. Consider the case whenn ≥ 3;
we want to break down the case when we have a2 × n size checkerboard to smaller cases. If we
start tiling from the end of the board, we see that there are two possibilities - either we put a domino
on horizontally, in which case we are left with a board of size2 × n − 1, or we can put on two
dominos vertically, in which case we are left with a board of size2 × n − 2. So, our relation is
Dn = Dn−1 + Dn−2. Now we prove thatDn ≤ 2n.

Base Case:In this situation it is easier if we use2 base cases. First, consider the case whenn = 1.
There is exactly one way to tile such a checkerboard, soD1 = 1 ≤ 2. Next, consider the case when
n = 2. We can either tile this checkerboard with two horizontal dominos or two vertical dominos. So
D2 = 2 ≤ 4.

Induction Hypothesis:Assume thatDn ≤ 2n, for all n ≤ k. We want to show that it is true for
n = k + 1.

Induction Step:We combine our recurrence relation and the induction hypothesis to get:

Dk+1 = Dk + Dk−1

≤ 2k + 2k−1

≤ 2k + 2k

= 2k+1

So we have shown thatDk+1 ≤ 2k+1 and thus we know thatDn ≤ 2n for all positive integersn, and
so we are done.

B. (10 pts) Show that∀ odda ∈ N, a2 = 1 mod 8.

Solution: An easy way to prove this is just to show that this is true fora = 1, 3, 5, 7. Because of
the properties of arithmetic modulo8, all odd numbers modulo8 are equivalent to either1, 3, 5, or 7.
Because of this fact, if we show it is true for these four numbers, then we have shown it to be true for
all odda ∈ N . So we get

12 = 1 mod 8
32 = 9 mod 8

= 1 mod 8
52 = 25 mod 8

= 1 mod 8
72 = 49 mod 8

= 1 mod 8

Alternate Solution: Since an odd natural number is defined as2k + 1 for somek ∈ N , we need to
prove that∀k ∈ N, (2k + 1)2 = 1 mod 8.



Base Case:k = 0. Then(2k + 1)2 = 1 = 1 mod 8.

Induction Hypothesis:Assume that(2k +1)2 = 1 mod 8. We want to show that(2(k +1)+1)2 = 1
mod 8.

Induction Step:We have

(2(k + 1) + 1)2 = (2k + 3)2

= 4k2 + 12k + 9
= (4k2 + 4k + 1) + 8k + 8
= (2k + 1)2 + 8(k + 1)
= 1 + 0 mod 8
= 1 mod 8

Thus,∀k ∈ N, (2k + 1)2 = 1 mod 8.



3. [RSA] [20 pts]

A. (10 pts)e = 7, p = 7, q = 11 Findd.

Solution: Remember that from the way RSA is setup thatd = e−1 mod (p − 1)(q − 1). So we are
looking for d = 7−1 mod 60. In order to find this, we use the extended GCD algorithm with inputs
60 and7.

egcd(60, 7)
egcd(7, 4)

egcd(4, 3)
egcd(3, 1)

egcd(1, 0)
return (1, 1, 0)

return (1, 0, 1)
return (1, 1, 0 - (4 div 3) x 1) = (1, 1, -1)

return (1, -1, 1 - (7 div 4) x (-1)) = (1, -1, 2)
return (1, 2, -1 - (60 div 7) x 2) = (1, 2, -17)

We can read off from here thatd = −17 = 43 mod 60.

B. (5 pts) With RSA Amazon cansign a message as follows; For a system with public key(N, e) and
secret keyd, Amazon sends the message(x, xd mod N). If Bob gets(x, y), how can he verify that
y = xd mod N? (Bob does not knowd and the answer is very brief.)

The answer that we were looking for is very simple. If Bob receives(x, y) and knows(N, e), one way
that he could verify thaty = xd is simply to encrypt the messagey. If y = xd, we get:

E(xd) = (xd)e mod N

= xde mod N

= x1+k(p−1)(q−1) mod N

= x mod N

This was shown all with properties that we learned from RSA. So, ifE(y) = x, then we know that the
message(x, y) was sent by Amazon.

C. (5 pts) Use the fact thatap−1 = 1 mod p for prime p and a relatively prime top to prove that
a(p−1)(q−1) = 1 mod pq for primesp andq anda relatively prime top andq.

From the fact thatap−1 = 1 mod p, we can see that:

a(p−1)(q−1) = (ap−1)q−1 mod p

= 1q−1 mod p

= 1 mod p

Similarly, we see thata(p−1)(q−1) = 1 mod p. So, from this we can see that:

a(p−1)(q−1) − 1 = jp

a(p−1)(q−1) − 1 = kq

So, jp = kq. From this we can see thatp divideskq. However, sincep andq are distinct, they are
relatively prime to each other. Therefore,k must be a multiple ofp - let’s call it mp. So we get

a(p−1)(q−1) − 1 = mpq

a(p−1)(q−1) = 1 + mpq

a(p−1)(q−1) = 1 mod pq



We noticed a lot of people tried to use the Chinese remainder theorem to solve this problem. Since the
Chinese Remainder Theorem was not covered in lecture or the homework, and was only mentioned once in
the section notes, we only accepted answers that were very complete when they used the Chinese Remainder
Theorem. Here is what we were looking for.

The Chinese remainder theorem states that if a number modulopq is uniquely determined by its value
modulop andq. That is, givena andb, that there is a unique numberx modulopq such thatx = a mod p
andx = b mod q. So, in this problem, we first expected you to show thata(p−1)(q−1) = 1 mod p and
a(p−1)(q−1) = 1 mod q. Also, you would need to state that1 = 1 mod p and1 = 1 mod q. Then, by
the Chinese remainder theorem, since there is a unique number modulopq that is equivalent to1 modulop
and1 moduloq, we must have thata(p−1)(q−1) = 1 mod pq.



4. [Stable Marriage] [14 pts]

A. (8 pts) Consider an instance of the Stable Marriage problem in which the men are{1, 2, 3, 4}, the
women are{A, B,C, D}, and the preference lists are

Men (1-4) Women (A-D)
1: A B D C A: 2 3 4 1
2: C B A D B: 1 4 2 3
3: D C B A C: 1 4 2 3
4: D C A B D: 1 3 2 4

Use the traditional marriage algorithm to find the male-optimal pairing.

Day 1 2 3
A: 1 1 1
B: 2
C: 2 2, 4 4
D: 3, 4 3 3

So, the male-optimal pairing is(A, 1), (B, 2), (C, 4), (D, 3).

B. (3 pts) Givenn men andn women, what is the minimum number of stable pairings that must exist for
any set of preferences? Justify your answer by describing an instance.

The minimal number of stable pairings is1. This happens when the male-optimal and female-optimal
pairings are the same. An example of this is when man1 and womanA have each other on the top
of their list, man2 and womanB have each other on the top of their list, and so on. The only stable
pairing in this instance is(1, A), (2, B), . . ..

It was necessary to describe an instance that works for arbitraryn to receive full credit.

C. (3 pts) We saw in the homework that it was possible for a pairing to be stable even if there was a
pair (M, W ) such thatM wasW ’s least favorite man andW wasM ’s least favorite woman. What
is the maximum number of couples with this property (each member is paired with their least favored
partner) can there be in any stable pairing? Justify your answer.

The maximum number is1; suppose that this is not true - that there is a situation where we have a
stable paring that has at least two such couples - call them(1, A) and(2, B). In this situation we know
that1 andA have each other on the bottom on their preference lists, and2 andB have each other on
the bottom of their preference lists. So, from this we know that1 must preferB overA, and2 must
prefer1 over2. Therefore,(1, B) is a rogue couple, which contradicts the fact that the pairing was
stable. Thus, we have a contradiction, and there can be at most one such couple with this property in
any stable pairing.



5. [Codes][30 pts]

A. (15 pts) Your friend sends you a message in the alphabet R = 0, F = 1, A = 2, U = 3, and N = 4 using
the polynomial scheme discussed in class. Assume that a polynomialP (·) overGF (q) is used, for the
smallest value ofq that will accommodate the given alphabet. The message size is 3. Four packets are
sent where packeti (starting from 0) corresponded toP (i). You receive the following packets.

• F

• U

• clearly corrupted

• N

Assuming the three decipherable packets arrive uncorrupted, what is the value in the corrupted packet?
Justify your answer.

The smallestq that will accommodate our size5 alphabet isq = 5. So we will do everything modulo
5. From the information given, we know that three of the points ofP (·) are(0, 1), (1, 3), and(3, 4).
We know thatP (·) is a degree2 polynomial, since the message was of size3. And since we have
3 points ofP (·), we can recoverP (·) exactly using polynomial interpolation. Remember that we do
everything modulo5 and that instead of dividing we multiply by the inverses modulo5. We get:

∆0(x) =
(x− 1)(x− 3)
(0− 1)(0− 3)

=
x2 − 4x + 3

3
= 2(x2 − 4x + 3)
= 2x2 − 8x + 6
= 2x2 + 2x + 1

∆1(x) =
(x− 0)(x− 3)
(1− 0)(1− 3)

=
x2 − 3x

−2
= 2(x2 − 3x)
= 2x2 − 6x

= 2x2 + 4x

∆3(x) =
(x− 0)(x− 1)
(3− 0)(3− 1)

=
x2 − x

6
= 1(x2 − x)
= x2 + 4x

P (x) = 1∆0(x)) + 3∆1(x) + 4∆3(x)
= 2x2 + 2x + 1 + 6x2 + 12x + 4x2 + 16x
= 2x2 + 1

Now we can useP (x) to recover the corrupted packet: it isP (2) = 9 = 4 = N. So the original
message was FUN.



B. Say another message is sent using five packets and you receive packets F, U, N, U, and R, one of which
is wrong.

I. (7 pts) The original message is either “FUN” or “RUN”. Which is it? Why? (Hint: try one.)

Since we already know what the encoding polynomial looks like if the original message was FUN,
let’s start by assuming that the original message was FUN. This means thatP (x) = 2x2 + 1, and
we know that there is only one corrupted packet. Since the original message was FUN, this means
that the first three packets were sent through uncorrupted. The fourth packet is corrupted - it
should have beenP (3) = 4 = N, but we received a U instead. However, the fifth packet is also
corrupted - it should have beenP (4) = 3 = U, but we received an R instead. Therefore, the
original message could not have been FUN, and thus the original message must have been RUN.

II. (4 pts) Recall that in the Berlekamp-Welch algorithm, one can set up a set of linear equations and
use the solution to reconstruct the original polynomial. How many unknowns and equations do
you have in the Berlekamp-Welch system for this situation?

Recall that in Berlekamp-Welch we are trying to solve for the coefficients ofQ(x) andE(x).
Q(x) is ann − 1 + k degree polynomial - in this case it would be a3 − 1 + 1 = 3 degree poly-
nomial, and thus it has4 unknown coefficients.E(x) is a degreek polynomial, but we already
know that its highest order coefficient is1. In this case it is a degree1 polynomial, and thus it has
1 unknown coefficient. Thus there are5 unknowns and equations total.

III. (4 pts) Write out the equations that correspond to the first two received characters: i.e.,R(0) and
R(1). Denote the coefficients ofQ(x) usingai and the coefficients ofE(x) by bi.

From above, we know that the form ofQ(x) andE(x) are:

Q(x) = a3x
3 + a2x

2 + a1x
2 + a0

E(x) = x + b0

We also know thatQ(i) = R(i)E(i); so fori = 0, 1 we get:

0a3 + 0a2 + 0a1 + a0 = 1(0 + b0)
a0 − b0 = 0

And:

a3 + a2 + a1 + a0 = 3(1 + b0)
a3 + a2 + a1 + a0 − 3b0 = 3


