Department of Mechanical Engineering
 University of California at Berkeley
 ME 104 Engineering Mechanics II
 Spring Semester 2010

Instructor: F. Ma
Midterm Examination No. 2
April 2, 2010
The examination has a duration of 50 minutes.
Answer all questions.
All questions carry the same weight.

1. A block with mass $m=4 \mathrm{~kg}$ is initially at rest at time $t=0$ on a rough horizontal surface with coefficients of static and kinetic friction given by $\mu_{s}=0.5$ and $\mu_{k}=0.25$, respectively. A small booster attached to the block ignites at $t=0$ and generates a variable thrust $T(t)$ for 4 s , as illustrated below. Let $T_{0}=20 \mathrm{~N}$ and gravitational acceleration $g=10 \mathrm{~m} / \mathrm{s}^{2}$.
(a) Draw a free-body diagram for the block.
(b) When does the block begin to move?
(c) How fast is the block moving at $t=4 \mathrm{~s}$?

2. Ball B, of mass m_{B}, is suspended from a cord of length l attached to cart A, of mass m_{A}, which can roll freely on a frictionless horizontal track. If the ball is given an initial horizontal velocity v_{0} while the cart is at rest, determine (a) the velocity of B as it reaches its maximum elevation, and (b) the maximum vertical distance h through which B will rise. It is assumed that $v_{0}^{2}<2 g l$.

3. The slender rod rolls without slipping on a circular disk which has a constant angular velocity ω_{0}. End A is constrained to move on a smooth horizontal surface as θ decreases. Determine the angular velocity ω of the rod in terms of ω_{0} when $\theta=70^{\circ}$.

4. (a) The free-body diagram for the block is given by

(b) Balancing forces in the horizontal and vertical directions,

$$
\begin{aligned}
& \Sigma F_{x}=T(t)-F_{f}=m \ddot{x} \\
& \Sigma F_{y}=N-m g=0 \quad \Rightarrow \quad N=m g
\end{aligned}
$$

The block is initially at rest and moves only after it overcomes static friction. The maximum static friction force acting on the block just before it slips is $F_{\max }=\mu_{s} N=\mu_{s} m g$. With $\ddot{x}=0$, the corresponding thrust is

$$
T^{*}=\mu_{s} m g=(0.5)(4 \mathrm{~kg})\left(10 \mathrm{~m} / \mathrm{s}^{2}\right)=20 \mathrm{~N}=T_{0}
$$

From the given illustration of the thrust over time, it follows that the block starts to move at $t=1 \mathrm{~s}$.
(c) When the block starts to slip at $t=1 \mathrm{~s}$, the friction force acting on it is $F_{f}=\mu_{k} N=\mu_{k} m g$. By a linear impulse-momentum analysis in the horizontal direction,

$$
m v=\int_{1}^{4} \Sigma F_{x} d t=\int_{1}^{4}\left(T(t)-\mu_{k} m g\right) d t=\int_{1}^{4} T(t) d t-3 \mu_{k} m g
$$

The impulse $\int_{1}^{4} T(t) d t$ attributed to the thrust is given by the area under the illustrated thrust profile from 1 s to 4 s :

$$
\int_{1}^{4} T(t) d t=T_{0}(4-1)+\frac{1}{2}\left(2 T_{0}-T_{0}\right)(2-1)+\left(2 T_{0}-T_{0}\right)(3-2)=\frac{9}{2} T_{0}
$$

Therefore, the block's speed v at $t=4 \mathrm{~s}$ is

$$
\begin{aligned}
\quad v & =\frac{9 T_{0}}{2 m}-3 \mu_{k} g=\frac{9(20 \mathrm{~N})}{2(4 \mathrm{~kg})}-3(0.25)\left(10 \mathrm{~m} / \mathrm{s}^{2}\right) \\
\Rightarrow \quad v & =15 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

2. (a) When ball B reaches its maximum elevation in position 2, its velocity $\left(\mathbf{v}_{B / A}\right)_{2}$ relative to cart A is zero. Since A is translating horizontally,

$$
\left(\mathbf{v}_{B}\right)_{2}=\left(\mathbf{v}_{A}\right)_{2}+\left(\mathbf{v}_{B / A}\right)_{2}=\left(\mathbf{v}_{A}\right)_{2}
$$

By conservation of system linear momentum,

$$
\begin{aligned}
\Delta G_{x}=0 \quad & \Rightarrow \quad m_{B} v_{0}=m_{A}\left(v_{A}\right)_{2}+m_{B}\left(v_{B}\right)_{2}=\left(m_{A}+m_{B}\right)\left(v_{B}\right)_{2} \\
& \Rightarrow \quad\left(v_{B}\right)_{2}=\frac{m_{B}}{m_{A}+m_{B}} v_{0}
\end{aligned}
$$

(b) The energy of the system is conserved.

$$
\Delta T+\Delta V_{g}=0
$$

$$
\begin{aligned}
& \Rightarrow \quad \frac{1}{2} m_{A}\left(v_{A}\right)_{2}^{2}+\frac{1}{2} m_{B}\left(v_{B}\right)_{2}^{2}-\frac{1}{2} m_{B} v_{0}^{2}+m_{A} g l+m_{B} g h-m_{A} g l=0 \\
& \Rightarrow \quad h=\frac{v_{0}^{2}}{2 g}-\frac{m_{A}+m_{B}}{m_{B}} \frac{\left(v_{B}\right)_{2}^{2}}{2 g}
\end{aligned}
$$

Using the result in part (a) for $\left(v_{B}\right)_{2}$,

$$
h=\frac{m_{A}}{m_{A}+m_{B}} \frac{v_{0}^{2}}{2 g}
$$

The assumption $v_{0}^{2}<2 g l$ ensures that

$$
h=\frac{m_{A}}{m_{A}+m_{B}} \frac{v_{0}^{2}}{2 g}<\frac{m_{A} l}{m_{A}+m_{B}}<l
$$

Position 1
A

Position 2
3. Since the rod $A D$ rolls on the disk without slipping,

$$
v_{B}=R \omega_{0}
$$

In position θ, \mathbf{v}_{A} is horizontal and \mathbf{v}_{B} is tangent to the disk. Thus the instantaneous center of zero velocity of the rod $A D$ is located at C, where $C A$ is perpendicular to \mathbf{v}_{A} and $C B$ is perpendicular to \mathbf{v}_{B}. In triangle $O A B$,

$$
\tan \frac{\theta}{2}=\frac{R}{A B}
$$

In triangle $C A B$,

$$
\begin{aligned}
& \tan \theta=\frac{A B}{C B} \\
\Rightarrow \quad & C B=\frac{A B}{\tan \theta}=\frac{R}{\tan (\theta / 2) \tan \theta}
\end{aligned}
$$

As a consequence,

$$
\begin{aligned}
& v_{B}=C B \omega_{A D} \\
\Rightarrow \quad & \omega=\omega_{A D}=\frac{v_{B}}{C B}=\frac{R \omega_{0}}{R} \tan (\theta / 2) \tan \theta=\omega_{0} \tan (\theta / 2) \tan \theta
\end{aligned}
$$

When $\theta=70^{\circ}$,

$$
\omega=\omega_{0} \tan 35^{\circ} \tan 70^{\circ}=1.92 \omega_{0}
$$

