Department of Mechanical Engineering
 University of California at Berkeley
 ME 104 Engineering Mechanics II
 Spring Semester 2010

Instructor: F. Ma
Midterm Examination No. 1
Feb 26, 2010
The examination has a duration of 50 minutes.
Answer all questions.
All questions carry the same weight.

1. The $5-\mathrm{kg}$ block B starts from rest and slides on the $10-\mathrm{kg}$ wedge A, which rests on a horizontal surface. Neglecting friction, determine the acceleration of the wedge and the acceleration of the block relative to the wedge.

2. A particle P of mass m is guided along a smooth circular path of radius r_{c} by the rotating arm $O A$. If the arm has a constant angular velocity ω, determine the angle $\theta \leq 45^{\circ}$ at which the particle leaves the circular path. Some formulas that may be useful are: $a_{t}=\dot{v} ; a_{n}=v^{2} / \rho$; $a_{r}=\ddot{r}-r \dot{\theta}^{2} ; a_{\theta}=r \ddot{\theta}+2 \dot{r} \dot{\theta}$.

3. The force $P=40 \mathrm{~N}$ is applied to the system, which is initially at rest. Determine the speeds of A and B after A has moved 0.4 m .

Problem 1. The wedge A is in rectilinear motion in an absolute $X Y$-frame. Attach $x y$-frame to the wedge, with the x-axis directed up the incline. The block B is in rectilinear motion in the translating $x y$-frame. Thus

$$
\begin{aligned}
& \mathbf{a}_{B}=\mathbf{a}_{A}+\mathbf{a}_{B / A}=\left(a_{A} \cos 30^{\circ}-a_{B / A}\right) \mathbf{i}-a_{A} \sin 30^{\circ} \mathbf{j} \\
\Rightarrow \quad & \left(a_{B}\right)_{x}=a_{A} \cos 30^{\circ}-a_{B / A}, \quad\left(a_{B}\right)_{y}=-a_{A} \sin 30^{\circ}
\end{aligned}
$$

For wedge A,

$$
\begin{align*}
\sum F_{X}=m a_{X} & \Rightarrow \quad N \sin 30^{\circ}=m_{A} a_{A} \\
& \Rightarrow \quad N \sin 30^{\circ}=10 a_{A} \tag{1}
\end{align*}
$$

For block B,

$$
\begin{array}{lll}
\sum F_{x}=m\left(a_{B}\right)_{x} & \Rightarrow & -m_{B} g \sin 30^{\circ}=m_{B}\left(a_{A} \cos 30^{\circ}-a_{B / A}\right) \\
& \Rightarrow & a_{B / A}=a_{A} \cos 30^{\circ}+g \sin 30^{\circ} \\
\sum F_{y}=m\left(a_{B}\right)_{y} & \Rightarrow & N-m_{B} g \cos 30^{\circ}=-m_{B} a_{A} \sin 30^{\circ} \\
& \Rightarrow & N-5 g \cos 30^{\circ}=-5 a_{A} \sin 30^{\circ} \tag{3}
\end{array}
$$

There are two unknowns N, a_{A} in Eqs. (1) and (3). Eliminate N from these two equations

$$
\Rightarrow \quad a_{A}=\frac{5 g \cos 30^{\circ}}{20+5 \sin 30^{\circ}}=1.89 \mathrm{~m} / \mathrm{s}^{2}
$$

Substitute the value of a_{A} into Eq. (2),

$$
a_{B / A}=1.89 \cos 30^{\circ}+g \sin 30^{\circ}=6.54 \mathrm{~m} / \mathrm{s}^{2}
$$

Problem 2. Attach $r \theta$-frame at O with the horizontal as the reference line. The particle is not in circular motion with respect to polar coordinates located at O. Suppose the particle leaves the circle of radius r_{c} at $\beta \leq 45^{\circ}$. At any position $\theta<\beta$,

$$
\begin{array}{lll}
\dot{\theta}=\omega=\text { contant } & \Rightarrow & \ddot{\theta}=0 \\
r=2 r_{c} \cos \theta & \Rightarrow & \dot{r}=-2 r_{c} \dot{\theta} \sin \theta=-2 r_{c} \omega \sin \theta \\
& \Rightarrow & \ddot{r}=-2 r_{c} \omega^{2} \cos \theta
\end{array}
$$

Since the force F exerted by the arm $O A$ on mass m is perpendicular to $O A$ while the reaction N is normal to the circular path,

$$
\sum F_{r}=m a_{r} \quad \Rightarrow \quad-m g \sin \theta+N \cos \theta=m\left(\ddot{r}-r \dot{\theta}^{2}\right)=m\left(-4 r_{c} \omega^{2} \cos \theta\right)
$$

When m leaves the path at $\theta=\beta, N=0$. Thus from the above equation,

$$
\begin{aligned}
& -m g \sin \beta=-4 m r_{c} \omega^{2} \cos \beta \\
\Rightarrow \quad & \beta=\tan ^{-1}\left(\frac{4 r_{c} \omega^{2}}{g}\right)
\end{aligned}
$$

Problem 3. Blocks A and B perform rectilinear motion. From a vertical reference line through the centers of the pulleys, measure the positions of A, B by x_{A} and x_{B}.

$$
\begin{aligned}
& 2 x_{A}+x_{B}=\text { constant } \\
\Rightarrow \quad & 2 v_{A}+v_{B}=0
\end{aligned}
$$

Let configuration 1 denote the initial rest positions of blocks A and B. Suppose configuration 2 corresponds to new positions after A has moved by 0.4 m . For the system consisting of A and B,

$$
\begin{aligned}
& U=\Delta T=T_{2}-T_{1}=T_{2} \\
\Rightarrow & P \Delta x_{B}=\frac{1}{2} m_{A} v_{A}^{2}+\frac{1}{2} m_{B} v_{B}^{2} \\
\Rightarrow & 40(0.8)=\frac{1}{2}(6) v_{A}^{2}+\frac{1}{2}(10)\left(-2 v_{A}\right)^{2} \\
\Rightarrow \quad & v_{A}=1.18 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

In addition,

$$
v_{B}=2 v_{A}=2.36 \mathrm{~m} / \mathrm{s}
$$

