Problem 1 solution

1 Part a

1.1 solution

The easiest way to calculate the potential is to take advantage of the effective spherical symmetry of infinitesimal charge elements

$$
\begin{aligned}
& -\int_{l} \mathbf{E} \cdot \mathbf{d} \mathbf{l}=-\int_{l} \mathbf{d} \mathbf{l} \cdot \int_{Q} \frac{k d q}{r^{2}} \hat{\mathbf{r}} \\
= & -\int_{Q} k d q \int_{\infty}^{r} \frac{\mathbf{d r} \cdot \hat{\mathbf{r}}}{r^{2}}=\int_{Q} \frac{k d q}{r}
\end{aligned}
$$

The apparent cylindrical symmetry of the problem encourages cylindrical coordinates, in which the charge element is $d q=\sigma \rho d \rho d \theta$, and $r=\sqrt{\rho^{2}+a^{2}}$

$$
\begin{array}{r}
k \int_{0}^{a} d \rho \int_{0}^{2 \pi} \frac{\sigma \rho d \rho d \theta}{\sqrt{\rho^{2}+z^{2}}}=k \int_{z^{2}}^{z^{2}+a^{2}} \frac{\pi \sigma d u}{u^{\frac{1}{2}}} \\
=\left.2 \pi \sigma k u^{\frac{1}{2}}\right|_{z^{2}} ^{z^{2}+a^{2}}=2 \pi k \sigma\left(\sqrt{z^{2}+a^{2}}-\sqrt{z^{2}}\right) \\
=\frac{\sigma}{2 \epsilon} k\left(\sqrt{z^{2}+a^{2}}-z\right)
\end{array}
$$

The u substitution being $u=z^{2}+a^{2} \Longrightarrow d u=z d z$

1.2 rubric

3 points for recognizing cylindrical symmetry.
3 points for distinguishing r from $\rho(!!)$, writing r correctly, writing $d q$ correctly, and setting up the integral 2 for calculating correctly and reporting the potential as a scalar

2 part b

$\mathbf{E}=-\nabla V$. Since there is only z dependence

$$
\begin{array}{r}
\mathbf{E}=-\frac{\partial V}{\partial z} \hat{\mathbf{z}} \\
=\frac{\sigma}{2 \epsilon}\left(1-\frac{z}{\sqrt{z^{2}+a^{2}}}\right) \hat{\mathbf{z}}
\end{array}
$$

2.1 rubric

4 points for setting up the calculation correctly
3 points for recognizing the potential only has dependence z. (Some thought there was a dependence, but a parametrizes the radius of the disk, and is not a coordinate).
1 point for including vector direction of \mathbf{E}

3 part c

By superposition,

$$
\begin{aligned}
& \mathbf{E}_{\text {planewithaholeinit }}=\mathbf{E}_{\text {plane }}-\mathbf{E}_{\text {disk }} \\
&=\frac{\sigma}{2 \epsilon} \hat{\mathbf{z}}-\frac{\sigma}{2 \epsilon}\left(1-\frac{z}{\sqrt{z^{2}+a^{2}}}\right) \hat{\mathbf{z}} \\
&=\frac{\sigma}{2 \epsilon} \frac{z}{\sqrt{z^{2}+a^{2}}} \hat{\mathbf{z}}
\end{aligned}
$$

3.1 rubric

5 points for seeing superposition
2 points for computing properly
1 point for remembering the $\hat{\mathbf{z}}$

1 Problem 2

(a)
[8pts for (a)] In terms of R and R^{\prime}, the resistance from A to B can be decomposed as follows:

$$
\operatorname{Series}\left[R^{\prime} \text {, Parallel }\left[R^{\prime}, \operatorname{Series}\left[R, R^{\prime}\right]\right]\right] .
$$

Thus, the effective resistance from A to B is given by

$$
R_{\mathrm{tot}}=R^{\prime}+\frac{1}{\frac{1}{R^{\prime}}+\frac{1}{R+R^{\prime}}}
$$

[Up to 6pts for this expression, partial credit for a partially correct answer] We can manipulate this expression to obtain

$$
\begin{aligned}
R_{\mathrm{tot}} & =R^{\prime}+\left(\frac{R+R^{\prime}+R^{\prime}}{R^{\prime}\left(R+R^{\prime}\right)}\right)^{-1}, \\
& =R^{\prime}+\frac{R^{\prime}\left(R+R^{\prime}\right)}{R+2 R^{\prime}} \\
& =\frac{R^{\prime}\left(R+2 R^{\prime}+R+R^{\prime}\right)}{R+2 R^{\prime}} \\
& =\frac{2 R+3 R^{\prime}}{R+2 R^{\prime}} \cdot R^{\prime}
\end{aligned}
$$

Setting $R_{\mathrm{tot}}=R$ and solving for R^{\prime} yields:

$$
\begin{aligned}
R & =\frac{2 R+3 R^{\prime}}{R+2 R^{\prime}} \cdot R^{\prime}, \\
R\left(R+2 R^{\prime}\right) & =\left(2 R+3 R^{\prime}\right) R^{\prime}, \\
R^{2}+2 R^{\prime} R & =2 R R^{\prime}+3\left(R^{\prime}\right)^{2}, \\
\left(R^{\prime}\right)^{2} & =R^{2} / 3 .
\end{aligned}
$$

Hence

$$
R^{\prime}=\frac{1}{\sqrt{3}} R \text {. }
$$

[2 pts for solving for R^{\prime} correctly]

(b)

[12 pts for all of (b). This part can be solved in many different ways: the grading scheme reflects one particularly straightforward approach, but it is possible to get full credit if you
solve the problem in a different manner. One complication is that the manipulations with square roots of 3 can be quite hairy: I've thus correspondingly dropped very few points for mistaken algebra, emphasizing the points on the physical concepts: Voltages across parallel branches are equal, and they distribute over a sequence of elements in series; current divides at a junction; Ohm's law applies to all the resistors; etc.]

We first calculate the answers in terms of R^{\prime} and V, then use the result from (a) to express these in terms of V and R only. As a check, we know that the total power dissipated should be

$$
P_{\mathrm{tot}}=\frac{V^{2}}{R_{\mathrm{tot}}}=\frac{V^{2}}{R} .
$$

Since $R_{\mathrm{tot}}=R$, we know that the total current flowing from A to B must be given by [1pt]

$$
I_{\mathrm{tot}}=\frac{V}{R} .
$$

Denote by I_{i}, V_{i} and P_{i} the current flowing through resistor i, the voltage drop across it, and the power dissipated through it. Since $I_{4}=I_{\text {tot }}$, we have

$$
V_{4}=I_{\mathrm{tot}} R^{\prime}=V \frac{R^{\prime}}{R}
$$

We then have [2pt]

$$
P_{4}=V_{4}^{2} / R^{\prime}=V^{2} \frac{R^{\prime}}{R^{2}}
$$

The voltage across the rest of the circuit is

$$
V_{\mathrm{rest}}=V-V_{4}=V \frac{R-R^{\prime}}{R}
$$

Since the rest of the circuit consists of resistors 1 and 2 and resistor 3 in parallel, we have [2pt]

$$
V_{3}=V_{1+2}=V_{\text {rest }} .
$$

Thus [1pt],

$$
P_{3}=V_{3}^{2} / R^{\prime}=V^{2} \frac{\left(R-R^{\prime}\right)^{2}}{R^{2} R^{\prime}}
$$

To examine resistors 1 and 2 , we note that $I_{1}=I_{2}$ and $V_{1}+V_{2}=V_{1+2}$, so

$$
I_{1}\left(R_{1}+R_{3}\right)=V_{\text {rest }}=V \frac{R-R^{\prime}}{R}
$$

so $[2 \mathrm{pt}]$

$$
I_{1}=I_{2}=V \frac{R-R^{\prime}}{R\left(R+R^{\prime}\right)}
$$

Hence [1pt each],

$$
P_{1}=I_{1}^{2} R=V^{2} \frac{\left(R-R^{\prime}\right)^{2}}{R\left(R+R^{\prime}\right)^{2}}
$$

and

$$
P_{2}=I_{2}^{2} R^{\prime}=V^{2} \frac{\left(R-R^{\prime}\right)^{2} R^{\prime}}{R^{2}\left(R+R^{\prime}\right)^{2}}
$$

To express these more compactly, let

$$
\phi:=\frac{R^{\prime}}{R}=\frac{1}{\sqrt{3}} .
$$

Then

$$
\begin{aligned}
P_{1} & =\frac{V^{2}}{R} \frac{(1-\phi)^{2}}{(1+\phi)^{2}}, \\
P_{2} & =\frac{V^{2}}{R} \frac{(1-\phi)^{2} \phi}{(1+\phi)^{2}}, \\
P_{3} & =\frac{V^{2}}{R} \frac{(1-\phi)^{2}}{\phi}, \\
P_{4} & =\frac{V^{2}}{R} \phi .
\end{aligned}
$$

Simplifying these, we get [2 pts for correct final answers in terms of V and R only, 1 pt if any incorrect, 0 pts if all incorrect]

$$
\begin{aligned}
& P_{1}=\left(7-\frac{12}{\sqrt{3}}\right) \cdot \frac{V^{2}}{R} \approx 0.072 V^{2} / R, \\
& P_{2}=\left(\frac{7}{\sqrt{3}}-4\right) \cdot \frac{V^{2}}{R} \approx 0.041 V^{2} / R, \\
& P_{3}=\left(\frac{4}{\sqrt{3}}-2\right) \cdot \frac{V^{2}}{R} \approx 0.309 V^{2} / R, \\
& \quad P_{4}=\frac{1}{\sqrt{3}} \cdot \frac{V^{2}}{R} \approx 0.577 V^{2} / R .
\end{aligned}
$$

We can see that, indeed, $P_{1}+P_{2}+P_{3}+P_{4}=V^{2} / R$.

Solution 3

When two capacitors are connected to each other, the charge will redistribute. Before the redistrubution, charge is

$$
\begin{align*}
& Q_{1}=C_{1} V_{1} \tag{1}\\
& Q_{2}=C_{2} V_{2} \tag{2}
\end{align*}
$$

after the redistribution, suppose the charge will be Q_{1}^{\prime} and Q_{2}^{\prime}, corresponding voltages are V_{1}^{\prime} and V_{2}^{\prime}, we will have

$$
\begin{equation*}
V_{1}^{\prime}=V_{2}^{\prime}=V^{\prime} \tag{3}
\end{equation*}
$$

and because of the 'island' effect, we have

$$
\begin{equation*}
Q_{1}^{\prime}+Q_{2}^{\prime}=Q_{1}+Q_{2} \tag{4}
\end{equation*}
$$

therefore
(a)

$$
\begin{equation*}
C_{1} V^{\prime}+C_{2} V^{\prime}=C_{1} V_{1}+C_{2} V_{2} \tag{5}
\end{equation*}
$$

solve for V^{\prime} we get

$$
\begin{equation*}
V_{1}^{\prime}=V_{2}^{\prime}=V^{\prime}=\frac{C_{1} V_{1}+C_{2} V_{2}}{C_{1}+C_{2}} \tag{6}
\end{equation*}
$$

(b) The charges are easy to get

$$
\begin{align*}
& Q_{1}^{\prime}=C_{1} V^{\prime}=C_{1} \frac{C_{1} V_{1}+C_{2} V_{2}}{C_{1}+C_{2}} \tag{7}\\
& Q_{2}^{\prime}=C_{2} V^{\prime}=C_{2} \frac{C_{1} V_{1}+C_{2} V_{2}}{C_{1}+C_{2}} \tag{8}
\end{align*}
$$

(c) When we connect the two capacitors in opposite, we can replace V_{2} with $-V_{2}$, and treat them the same way we did above. Therefore

$$
\begin{equation*}
V^{\prime \prime}=\frac{C_{1} V_{1}-C_{2} V_{2}}{C_{1}+C_{2}} \tag{9}
\end{equation*}
$$

Positive sign of $V^{\prime \prime}$ means it is in the same direction as V_{1}, and vice versa.
(d) The charge on each capacitor is given by

$$
\begin{align*}
Q_{1}^{\prime \prime} & =C_{1} V^{\prime \prime}=C_{1} \frac{C_{1} V_{1}-C_{2} V_{2}}{C_{1}+C_{2}} \tag{10}\\
Q_{2}^{\prime \prime} & =C_{2} V^{\prime \prime}=C_{2} \frac{C_{1} V_{1}-C_{2} V_{2}}{C_{1}+C_{2}} \tag{11}
\end{align*}
$$

(4) a) Assume a sphere of radius r has been built up, $r<a$

- The voltage going from ∞ to r given by

$$
V=\frac{Q}{4 \pi \varepsilon_{0} r} \quad \text { assuming } V(\infty)=0
$$

(the result for voltage of spherical charge.)
where $Q=\rho \cdot$ volume $=\rho \cdot \frac{4}{3} \pi r^{3}$

$$
\Rightarrow V=\frac{4 \pi r^{2} \rho}{3 \pi \varepsilon_{0} x}=\frac{\rho}{3 \varepsilon_{0}} r^{2}
$$

- energy:

$$
\begin{aligned}
y: & U=V Q \\
d U & =V d Q \\
d u & =\frac{\rho}{3 \varepsilon_{0}} r^{2}\left(4 \pi r^{2} \rho\right) d r \\
U= & \int_{0}^{a} \frac{4 \pi \rho^{2}}{3 \varepsilon_{0}} r^{4} d r
\end{aligned}
$$

$$
=\left.\frac{4 \pi p^{2}}{3 \varepsilon_{0}} \frac{r^{5}}{5}\right|_{0} ^{a} \frac{4 \pi \rho^{2} a^{5}}{15 \varepsilon_{0}}
$$

b) $p=\frac{e}{\frac{4 \pi}{3} b^{3}}$

$$
\begin{aligned}
u=\frac{4 \pi \rho^{2} b^{5}}{15 \varepsilon_{0}} & =\frac{4 \pi e^{2} b^{8}}{5\left(\frac{4 \pi}{3}\right)^{3} b^{6} \varepsilon_{0}} \\
u & =\frac{3 q^{2}}{20 \pi b \varepsilon_{0}}
\end{aligned}
$$

Assume

$$
\begin{aligned}
& u=m c^{2} \\
& \Rightarrow m c^{2}=\frac{3 q^{2}}{20 \pi b \varepsilon_{0}} \quad \Rightarrow b=\frac{3 e^{2}}{20 \pi \varepsilon_{0} m c^{2}} \\
& b=1.68 \times 10^{-15} \mathrm{~m}
\end{aligned}
$$

A couple comments

- You must somehow incorporate moving charges from ∞ to the ball. Taking $V=-\int_{0}^{n} E d r$ typically resulted in -4 points.
- Please remember $Q=\frac{4}{3} \pi r^{3} \rho \quad d Q=4 \pi r^{2} \rho$ One would 2 to 5 points based on severity of mistake.
- $1 / 2 \frac{Q^{2}}{L}, \frac{1}{2} \int \rho V d$ (vie $)$, and $U=\int \frac{1}{2} \varepsilon_{0} E^{2} d($ volume $)$
all have a critical error in that they do not account for some of the energy. Use $U=Q V$
- $U \neq V$ (potential energy is not equal to voltage)
- Lastly, some of you received -3 for having bad units. It is one thing to have a bad formula, it is quite another to assume a formula will magically give the correct units. ALWAYS CHECK YOUR UNITS, especially if you are unsure of your answer.

