IEOR 161 Operations Research II
 University of California, Berkeley
 Spring 2007

Midterm 2 Solution

1. (a) Let the states be the person Paris has chosen to go out with, i.e. $\{N, B, L, S\}$. Therefore the transition probabilities are

$$
\left(\begin{array}{cccc}
0 & 1 / 3 & 1 / 3 & 1 / 3 \\
1 / 3 & 0 & 1 / 3 & 1 / 3 \\
1 / 3 & 1 / 3 & 0 & 1 / 3 \\
1 / 3 & 1 / 3 & 1 / 3 & 0
\end{array}\right)
$$

(b) The Transition Matrix is doubly stochastic, limiting probabilities are $\pi_{N}=\pi_{B}=$ $\pi_{L}=\pi_{S}=1 / 4$. Therefore the proportion of time Paris spends with each friend is $1 / 4$.
(c) Let T_{i}, j denote the number of transitions needed to go from i to j .

$$
E\left[T_{N, S}\right]=1+P_{N, B} E\left[T_{B, S}\right]+P_{N, L} E\left[T_{L, S}\right]=1+1 / 3\left(E\left[T_{B, S}\right]+E\left[T_{L, S}\right]\right)
$$

By symmetry, $E\left[T_{N, S}\right]=E\left[T_{B, S}\right]=E\left[T_{L, S}\right]$, thus $E\left[T_{N, S}\right]=3$.
2. (a) Let G be the process of green men's arrival process, and R be the process of red men's arrival process. $\min (G, R)$ is exponential with rate $\mu+\lambda=2+3=5$. Let T_{i} be the interarrival time between the (i-1)th arrival and ith arrival, and T be the time it takes to fill the space ship.

$$
E[T]=\sum_{i=1}^{3} E\left[T_{i}\right]=3 \times \frac{1}{5}=\frac{3}{5}
$$

(b) For each arrival, the probability that it is a green man is

$$
\operatorname{Pr}\{G<B\}=\frac{\mu}{\mu+\lambda}=\frac{2}{5}
$$

Since the arrivals are independent,

$$
\operatorname{Pr}\{\text { the crew are all green }\}=\left(\frac{2}{5}\right)^{3}
$$

3. If we count a organ if it is launched before time s but remains alive at time t, then the number of items counted is Poisson with mean $m(s)=\lambda \int_{0}^{s} e^{-\mu(t-y)} d y$. The desired probability is $e^{-m(s)}$.
