

CS 61B (Clancy) Exam 1
September 26, 2005

A

Read and fill in this page now.
Do NOT turn the page until you are told to do so.

You have approximately two hours to complete this test. You may consult any books,
notes, or other paper-based inanimate objects available to you. To avoid confusion,
read the problems carefully. If you find it hard to understand a problem, ask us to
explain it. If you have a question during the test, please come to the front or the side
of the room to ask it.

Some students are taking this exam late. Please do not talk to them, mail them
information, or post anything about the exam to news groups or discussion forums
until after Tuesday.

This exam comprises 15% of the points on which your final grade will be based. Par-
tial credit may be given for wrong answers. Your exam should contain five problems
(numbered 0 through 4) on 8 pages; a supplementary handout will also be distrib-
uted at the exam. Please write your answers in the spaces provided in the test; in
particular, we will not grade anything on the back of an exam page unless we are
clearly told on the front of the page to look there.

Relax—this exam is not worth having heart failure about.

Your name:

Your login name:

Your lab t.a.:

Your lab time:

Problem 0 Total: /30

Problem 1

Problem 2 Problem 4

Problem 3

A2

Your login name:

cs61b-

A3

Problem 0 (1 point)

Put your login name on each page. Also make sure you have provided the informa-
tion requested on the first page.

Problem 1 (2 points)

Using the conventions in the “Boxes and Arrows” document, draw the box-and-arrow
diagram that results from executing the following code segment.

Point p1 = new Point (1, 4);
Point p2 = new Point (2, 3);
p2.y = p1.x;
p1 = p2;

Problem 2 (2 points)

Students who used

assertEquals

 to compare two

Measurement

 objects in their JUnit
test were surprised that it didn’t work as they expected. For example, they defined a
test method that constructed a measurement named

m1

 representing 4'2" and
another named

m2

 representing 2'1", then made the following call;

assertEquals (m1, m2.multiple(2));

This assertion failed, even with a correctly coded

multiple

 method. Explain why. (An
outline of the

Measurement

 class appears on a separate supplementary handout.)

Your login name:

cs61b-

A4

Problem 3 (8 points)

Provide the following iteration methods for the

Measurement

 class:

•

public void initIterator (Measurement end)

initializes an iterator for the sequence of measurements that starts at this mea-
surement and ends at

end

, with consecutive elements of the sequence differing by
1 inch.

•

public boolean hasNext ()

returns true if not all the measurements between

start

 and

end

 have been enu-
merated, and false otherwise.

•

public Measurement next ()

returns the next measurement in the sequence between

start

 and

end

.

Also provide declarations for whatever instance variables your iteration will need to
record its state. The iteration should not affect any other

Measurement

 objects being
used.

You should assume that this measurement’s value is no greater than

end

.

Suppose this measurement represents 1 foot, 3 inches. After a call to

initIterator

 with
an argument representing 1 foot, 5 inches, successive calls to

next

 would return the

Measurement

 objects representing

1. 1 foot, 3 inches,

2. 1 foot, 4 inches, and

3. 1 foot, 5 inches.

If

initIterator

’s argument is the same as this measurement,

initIterator

 initializes an
iteration sequence of one measurement.

An outline of the

Measurement

 class appears on a separate supplementary handout.
Make no assumptions about the instance variables in this class. Put your own code
on the next page.

Your login name:

cs61b-

A5

Space for your answer to problem 3

public class Measurement {

//

Instance variables from the existing

 Measurement

class would go here.

//

None, however, are named, so you’re not allowed to use variables like

myFeet

.

//

Instance variable(s) for the iteration:

//

Constructors and methods

 plus, minus, multiple, toString,

and

 equals

go here.

//

Initialize an iteration of measurements starting at this measurement and ending

//

at

end

, with consecutive elements of the iteration differing by 1 inch.

public void initIterator (Measurement end) {

}

//

Return

 true

if there are more measurements to be returned,

 false

otherwise

.
public boolean hasNext () {

}

//

Return the next measurement in the iteration sequence.

//

Precondition:

 hasNext ().
public Measurement next () {

}
}

Your login name:

cs61b-

A6

Problem 4 (17 points)

Consider the addition of an

append

 method to the

IntSequence

 class. The

append

method takes one argument, another

IntSequence

 object, and returns a new

IntSe-
quence

 that contains first the elements of this sequence, then the elements of the
argument sequence. A call to

append

 should leave both the component sequences
unchanged.

For example, the code segment

IntSequence seq1 = new IntSequence (3);
seq1.add (1);
seq1.add (7);
IntSequence seq2 = new IntSequence (5);
seq2.add (4);
seq2.add (9);
IntSequence seq3 = seq1.append (s2);
System.out.println (seq3);

should print “1 7 4 9”.

Your login name:

cs61b-

A7

Part a

One might convert the above example to a JUnit test method named

testTypical

.
A thorough tester would provide at least three other test methods. Describe—in
English, not in Java, giving examples of sequences you would test if necessary—
three more test methods that would provide additional evidence about the correct-
ness of your

append

 method.

1.

2.

3.

Part b

Give the Java code for one of the test methods you just described.

Your login name:

cs61b-

A8

Part c

Provide the Java code for the

append

 method. An outline of the

IntSequence

 class
appears on a separate supplementary handout. Make no assumptions about any
methods that don’t appear in the outline.
public IntSequence append (IntSequence seq) {

