
CS 61CL (Clancy/Culler) Solutions and grading standards for exam 2
Fall 2008

 A

149 students took the exam. The average score was 42.3; the median was 44. Scores
ranged from 7 to 60. There were 71 scores between 46 and 60, 60 between 31 and 45, 16
between 16 and 30, and 2 between 7 and 15. (Were you to receive scaled grades of 23 out
of 30 on your two in-class exams and 46 out of 60 on the final exam, plus good grades on
homework and lab, you would receive an A–; similarly, a test grade of 16 may be pro-
jected to a B–.)

There were two versions of the test. (The version indicator appears at the bottom of the
first page.)

If you think we made a mistake in grading your exam, describe the mistake in writing and
hand the description with the exam to your lab t.a. or to Mike Clancy. We will regrade
the entire exam.

Problem 0 (2 points)

You lost 1 point on this problem if you did any one of the following:
• you earned some credit on a problem and did not put your login name on the

page,
• you did not adequately identify your lab section, or
• you failed to put the names of your neighbors on the exam.

The reason for this apparent harshness is that exams can get misplaced or come unsta-
pled, and we want to make sure that every page is identifiable. We also need to know
where you will expect to get your exam returned. Finally, we occasionally need to verify
where students were sitting in the classroom while the exam was being administered.

Problem 1 (10 points)

Parts a and b, worth 2 points each, involved isolating the Rs field (in version A) or the Rt
field (in version B) of an instruction. Here are solutions.

 isolating Rs isolating Rt
C // two-shift version

return (inst << 6) >> 27;

// shift-and-mask version
return (inst >> 21) & 0x1F;

// two-shift version
return (inst << 11) >> 27;

// shift-and-mask version
return (inst >> 16) & 0x1F;

assembly
language

two-shift version
sll $v0,$a0,6
srl $v0,$v0,27
jr $ra

shift-and-mask version
srl $v0,$a0,21
andi $v0,$v0,0x1F

two-shift version
sll $v0,$a0,11
srl $v0,$v0,27
jr $ra

shift-and-mask version
srl $v0,$a0,16
andi $v0,$v0,0x1F

More of you provided the two-shift version, though (we think) the shift-and-mask version
is somewhat simpler. Each error lost 1 point. The most common bug was misunderstand-
ing of the shift and masking operations.

 2

Part c, worth 3 points, involved a C program segment to convert a lower-case letter to
upper-case (version A) or vice versa (version B). You were to translate the C code to as-
sembly language. Here's a solution to version A.

 li $t1,'a'
 li $t2,'z'
 blt $t0,$t1,ok # ch < 'a' if branch
 bgt $t0,$t2,ok # ch > 'z' if branch
 sub $t0,$t0,$t1 # compute ch – 'a'
 addi $t0,$t0,'A' # compute ch – 'a' + 'A'
ok:

Correct logic was worth 2 points and the computation 1 point. This generally worked out
to –1 per error.
Finally, part d involved translating a C switch to assembly language. It was also worth 3
points, and was the same on both versions. Here's a solution.

 li $t1,'y'
 bne $t0,$t1,checkn
 li $v0,1
 j switchend
checkn:
 li $t1,'n'
 bne $t0,$t1,default
 li $v0,0
 j switchend
default:
 li $v0,-1
switchend:

The 3 points were divided into 2 for the logic, 1 for the return value. Again, this generally
worked out to –1 per error.

Problem 2 (4 points)
In this problem, you were to translate machine language instructions to assembly lan-
guage. In version A, the instructions were 8D28FFF8 and 01022020; in version B, they
were AD09FFF8 and 00881020.

We start by expressing each instruction as binary, in order to access the instruction's bit
fields.

hexadecimal binary
8D28FFF8 100011 01001 01000 1111111111111000

01022020 000000 01000 00010 00100 00000 100000

AD09FFF8 101011 01000 01001 1111111111111000

00881020 000000 00100 01000 00010 00000 100000

We observe from the op codes that 8D28FFF8 is lw, AD09FFF8 is sw, and the others
are R-format instructions. The function fields of the latter indicate that each is an add.

In an assembly language lw and a sw, the Rt field is the first operand. Rt is the second
operand in machine language. The offset for each is –8. (Note that the offset is in bytes,
unlike the operand in a branch or jump, which is a word offset or address.)

 3

The resulting instructions are
lw $8,-8($9)
sw $9,-8($8)

In the assembly language add instructions, the operands are Rd, Rs, and Rt. In machine
language, they appear in the order Rs, Rt, Rd. Thus 01022020 translates to

add $4,$8,$2

and 00881020 translates to
add $2,$4,$8

Each instruction was worth 2 points. 1 point partial credit was given only for the follow-
ing, in which all the bit fields were parsed correctly but operands were out of order.

hexadecimal 1 point partial credit answer
8D28FFF8 lw $9,-s($8)

01022020 add $8,$2,$4

AD09FFF8 sw $8,-8($9)

00881020 add $4,$8,$2

Most of you got this correct.

Problem 3 (4 points)
This problem involved translation of truth table values to Boolean expressions. It was the
same in both versions. Answers are

U0 = N2 + N1 + N0

U4 = N2 N1 N0

U2 = !N2 N1 N0 + N2 !N1 !N0 + N2 !N1 N0 (sum of products)

 = N2 + N1 N0 (simplified)

Each part was worth 1 point. You didn't need to simplify U4 or U0, and you didn't need to
simplify U2 all the way. Some of you provided a sum-of-products expression for U0,
which was maximally unsimplified! Common errors mainly involved faulty simplifica-
tion of U2.

Problem 4 (4 points)
In this problem, you were to provide a simplified Boolean expression representing a
given circuit. The circuits differed slightly in the two versions: in version A, the bottom
multiplexor had A and 0 as the 0 and 1 inputs, while in version B those inputs were ex-
changed.

 4

A good approach is to make a truth table:

version A version B
 S 0 1
A
0 0 0
1 0 1

 S 0 1
A
0 0 0
1 1 0

Simplifying, we find that the output X = S A (version A) or X = !S A (version B),

You received 1 point out of 4 for getting started; you received 3 points out of 4 for an in-
sufficiently simplified expression.

Problem 5 (6 points)

Here, you had to supply arguments to an assembly language version of snprintf. This
problem was the same on both versions. (We announced at the exam that the format
string should be changed to "%s%d %c", i.e. with no blank after the "%s".) Here is a so-
lution.

argument 4 (in $a3): the string "N = "
la $a3,chars+5

argument 5 (on the stack): the integer 112
lb $t0,more
sw $t0,0($sp)

argument 6 (on the stack): the character semicolon
lb $t0,more+5
sw $t0,4($sp)

Each argument was worth 2 points, for a possible total of 6.

Deductions were made as follows:
–2 confusing the type of an argument, for example, putting characters of a string into
a register or treating a character like a string
–2 not saving an argument to the stack that should have been saved there (you lost
this twice by not putting anything on the stack)

–1, each occurrence wrong operator or offset (e.g. lw for lb, sb for sw, lw for sw)
–1 wrong stack index (only deducted once)

–1 forgetting to use $a3
You were allowed to place arguments 5 and 6 on the stack in either order.

 5

Problem 6 (5 points)
In this problem, you were to give the C equivalent of assembly language accesses to a
data structure. The data structure is pictured below.

$s0

$s0 corresponds to a struct node ** in C.
The two sets of assembly language segments and their C translation for each of the two
versions appears below.

Version A

assembly language C
addi $t0,$s0,4
sw $0,0($t0)

lists[1] = 0;

addi points $t0 at lists[1]; sw zeroes that element.
lw $t0,8($s0)
sw $t0,24($s0)

lists[6] = lists[2];

lw gets lists[2]; sw stores it into lists[6].
lw $t0,20($s0)
lw $t0,20($t0)
sw $0,20($t0)

lists[5]->next->next = 0;

lw gets lists[5]; the next lw gets lists[5]->next;
sw zeroes lists[5]->next->next.

 6

Version B

assembly language C
addi $t0,$s0,8
sw $0,0($t0)

lists[2] = 0;

lw $t0,12($s0)
sw $t0,16($s0)

lists[4] = lists[3];

lw $t0,20($s0)
lw $t0,20($t0)
sw $0,20($t0)

lists[5]->next->next = 0;

The first program segment was worth 1 point, and the second and third were worth 2
points each. Answers that displayed one of the following common misconceptions could
have earned 4 out of the 5 points:

a. assuming that lists was an array of struct nodes (possibly including a struct node *
at the start) rather than an array of pointers;

b. consistently being off by one level of indirection.

The first of those misconceptions might have resulted in version A answers of
lists[0].values[1] = 0;

lists[0].next = lists[0].values[2];

lists[0].next->next->next = 0;

Finally, a solution to the third program segment that assumed that lists[k]->next and
lists[k]->next->next were adjacent in memory (i.e. occupied consecutive elements of the
array) lost 2 points. This was a common error.

Problem 7 (6 points)
Part a, worth 4 points, involved converting two values from decimal to their IEEE float-
ing point representations. Here are solutions.
Version A

decimal IEEE floating point
4.5 The sign is 0. The exponent is 2, so the biased exponent is 129. The frac-

tion is (1).001, the result of shifting 100.1 two places to the right and
then hiding the hidden bit.

The result is 0 10000001 001000 … = 0x40900000.
–0.625 The sign is 1. The exponent is –1, so the biased exponent is 126. The

fraction is (1).010, the result of shifting .101 left one place and then hid-
ing the hidden bit.

The result is 1 01111110 010 … = 0xBF200000.

 7

Version B

decimal IEEE floating point
4.25 The sign is 0. The exponent is 2, so the biased exponent is 129. The frac-

tion is (1).0001, the result of shifting 100.01 two places to the right and
then hiding the hidden bit.

The result is 0 10000001 0001000 … = 0x40880000.
–0.75 The sign is 1. The exponent is –1, so the biased exponent is 126. The

fraction is (1).10, the result of shifting .11 left one place and then hiding
the hidden bit.

The result is 1 01111110 100 … = 0xBF400000.

You received 1 point for correctly computing the biased exponents, 1 point for correctly
finding the fractions with the hidden bits, 1 point for the signs, and—if all these were cor-
rect—1 point for the correct hexadecimal value. An error involving an incorrect exponent
or an incorrect fraction on either value lost you the corresponding point.
Adding the two values in part b involved increasing the exponent and shifting the fraction
of the smaller value to equalize exponents, adding the values, then renormalizing as
shown below.

Version A Version B

Compute 1.001 * 22 – 1.01 * 2–1.

Shift the fraction of the second value three
places to equalize exponents:

= 1.00100 * 22 – .00101 * 22 = .11111 * 22
Renormalize:

= 1.1111 * 21 = 3.875

Compute 1.0001 * 22 – 1.1 * 2–1.

Shift the fraction of the second value three
places to equalize exponents:

= 1.0001 * 22 – .0011 * 22 = .1110 * 22
Renormalize:

= 1.110 * 21 = 3.5

You earned 1 point for shifting and 1 point for renormalizing, for a maximum of 2 in this
part.

Problem 8 (4 points)
This problem involved exploring the consequences of adding a bit to the exponent in the
IEEE floating point representation and simultaneously removing a bit from the fraction.
In particular, you were to decide if the smallest x for which x = x+1 would decrease, in-
crease, or stay the same. This problem was the same on both versions.

The smallest x for which x = x+1 would decrease from 224 to 223. The problem arises
when the exponents of the summands are equalized; the fraction for 1.0 must be shifted
right as many places as the exponent is increased to match that of the bigger value. Shift-
ing the hidden bit 24 places in IEEE format essentially zeroes it. If the number of fraction
bits were reduced by 1, we only need a shift of 23 places to render 1.0 meaningless.

 8

Points were allocated as follows:
• 1 point for saying "decrease", and 1 more point for saying how much ("by half", or

"by a factor of 2");
• 1 point for mentioning the need to equalize exponents, or for saying that the values

were "far apart";
• 1 point for mentioning the need to shift the fraction, and that a fraction shifted 23 bits

in the new system would disappear.
You may have lost one or both of the last two points by being insufficiently specific
about how the modified bit fields related to the operation of addition.

If you got it backward (by saying x would increase) but had the right explanation, you
received 3 points out of 4. You received no penalty for saying that x would decrease by a
power of 2.

Problem 9 (7 points)
In this problem, the same in both versions, you were to translate a C function (similar to
the code in problem 1) to assembly language. Here's a solution.

answer:
 addi $sp,$sp,-4
 sw $ra,0($sp)
 move $a1,$a0
 la $a0,format
 jal printf
 jal getchar
 li $t0,'y'
 bne $t0,$v0,return0
 li $v0,1
 j return
return0:
 li $v0,0
return:
 lw $ra,0($sp)
 addi $sp,$sp,4
 jr $ra

 .data
format:
 .asciiz "%s"

2 points were awarded for saving and restoring registers, 3 for procedure calls, and 2 for
determining the return value. Common 1-point errors were using $s0 without saving it,
using incorrect argument registers, failing to pass the format string to printf, and forget-
ting to pop the stack. Passing no arguments to printf at all lost 2 points.

We told you at the exam not to use syscall. Some of you did it anyway. To avoid deduc-
tions, you had to use it correctly: "print string" requires a 4 in $v0 and the address of the
first character of the string to print in $a0; "get character" requires a 12 in $v0, and re-
turns the character in $a0 (contrary to MIPS register use conventions).

 9

Problem 10 (8 points)
This problem was the same on both versions. Part a, worth 4 points, was to identify
which instructions in the given code would produce entries in the relocation table. The
code appears below, with relevant instructions underlined and boldfaced.

Assembly language, .text section Relocatable binary, .text section
Argument is the number of bytes
the caller wants to allocate.
Address of the requested storage
is returned, or 0 if request
can't be satisfied.
stackalloc:
 lw $v0,nextfree

 add $t0,$a0,$v0
 la $t1,nextfree

 ble $t0,$t1,ok

 add $v0,$0,$0
 j return
ok:
 sw $t0,nextfree

return:
 jr $ra

Address

00
04
08
0c
10
14
18
1c
20

24
28

2c

Contents

3c010000
8c220064
00824020
3c010000
34290064
0128082a
10200003
00001020
0800000b

3c010000
ac280064

03e00008

Assembly language, .data section Relocatable binary, .data section
stg:
 .space 100

nextfree:
 .word stg

00
…
60

64

00000000
 ...
00000000

00000000

The jr does not produce a relocation entry, since the relevant absolute address will be in a
register rather than in the instruction itself.

Note that some of the assembly language instructions—specifically, lw, la, and sw—
expand to two machine language instructions, and both instructions in the pair will con-
tribute relocation entries.

You lost ½ point in this part for each missing entry and 1 for each wrong entry. A frac-
tional score was truncated.

 10

Part b was to do the relocation by adjusting absolute addresses in the machine language
instructions. The following adjustments are necessary:

• Change the right half of each lui—at locations 00, 0c, and 24—to 1001.

• Change the j instruction at location 20 to 0x0810000b.

• Change the word at location 64 to 0x10010000.

The lw at location 04, the ori at location 0c, and the sw at location 28 would merely get
changed to their existing values in the relocation process.

You received 2 points in this part for correctly changing all the lui instructions, 1 point
for correctly changing the j, and 1 point for correctly changing the word at location 64.
(Omitting the latter was a common error.) 1 point was deducted for each incorrectly
modified instruction.

