
CS3 Midterm 1 Fall 2007

Standards and solutions

Problem 1. And the return value is... (9 points)
For problems 1-7, write the result of evaluating the Scheme expression that comes before the . If the
Scheme expression will result in an error, write ERROR in the blank and describe the error. The Roman
Numerals case study code is at the end of this exam.

1 (se 'heaven '(and the) earth) 　ERROR – undefined variable: earth

2 (word "" (word "" (word 'hello (word "" (word ""))))) hello

3
(equal? 'lou (or 'mary 'lou 'retton))  #f
(or ‘mary ‘lou ‘retton) returns mary, so the equal? becomes
 (equal? ‘lou ‘mary)

4

(define (mystery wd)
 (cond (wd 'im-confused)

 (else 'ah-ha)))

(mystery '(you are not confused))  im-confused
we replace wd in the cond statement with the sentence ‘(you are not confused), which
evaluates to #t in scheme. Remember anything that is not #f in Scheme is true!

5 (or (if #f #t #f) 7) 7

6 '(+ 3 5)  (+ 3 5)

7 (decimal-value 'vvv) 15

For problem 8, fill in the blank.

8

(define (ends-with-prefix? number-sent)
 (starts-with-prefix? (reverse number-sent)))

(ends-with-prefix? ‘(10 5 1))  #t
Remember that starts-with-prefix takes in numbers, not roman numerals. Then you just need
to reverse a sentence that returns #t when given to starts-with prefix.

For problem 9, write a meaningful comment for mystery2.

9

;; mystery2 takes in a sentence of numbers
;; and returns the sum of all the even numbers
(define (mystery2 sent)
 (cond ((empty? sent) 0)
 ((even? (first sent))
 (+ (first sent) (mystery2 (bf sent))))
 (else
 (mystery2 (bf sent)))))

Problem 2. Rate my moves (A: 4 points, B: 6 points)
The Motion Picture Association of America rates movies with the following system:

Rating Description Age
G General Admission any

PG Parental guidance suggested any
PG-13 Parents strongly cautioned. 13+

R Restricted 13+
NC-17 No one under 17 admitted 17+

Part A. Write the predicate can-watch?, which takes in a numeric age and a rating (a word, as above)
and returns #t if a person with a given age can be admitted to a movie with a given rating. Be judicious
in your tests: using excessive cond cases or excessive comparisons to specific rating values (e.g., G,
PG-13, ...) will lose points.

(define (can-watch? age rating)
 (cond ((>= age 17) #t)

((< age 13)
 (member? rate '(g pg)))
(else
 (not (equal? rate 'nc17)))))

Most students were okay with this problem. The only big issues were if students didn’t know how
to form a cond statement correctly or if they happened to check for the wrong ages in the cond
statement (allowing 12 year olds to watch PG-13 and R movies for example).

Part B. A young person who is choosing between two movies to see needs your help: he wants to see
the most mature movie possible for his age. Write a procedure best-movie which takes a numeric age
and two movie ratings as words, and returns the highest of the two ratings that can be attended for that
age. If the given age is not old enough to attend either movie, return the word sorry.

Part of your solution should use the form of the second, “better” solution in the first Difference between
Dates case study. Assume you have a working version of can-order? to use.

(define (best-movie age rate1 rate2)
 (cond
 ((and (not (can-watch? age rate1)) (not (can-watch? age rate2)))

 'sorry)
((and (can-watch? age rate1) (not (can-watch? age rate2)))
 rate1)
((and (not (can-watch? age rate1)) (can-watch? age rate2))
 rate2)
((> (value rate1) (value rate2))
 rate1)
(else
 rate2)))

(define (value rating)
 (cond ((equal? rating 'g) 1)

((equal? rating 'pg) 2)
((equal? rating 'pg-13) 3)
((equal? rating 'r) 4)
((equal? rating 'nc-17) 5)
(else
 'invalid-rating!)))

Common errors for this problem included:
- Not writing the solution in the dbd style, which required you to write a helper that assigned

values to certain movie ratings, like in the value helper procedure.
- Incorrectly writing the value procedure, many students decided to assign values that related

to the minimum age of a viewer for a certain movie rating (so 0 to both g and pg and 13 to
pg-13 and r). By assigning the same value to different ratings, you could possibly return the
lower rating if the values are the same.

- Several students forgot to use can-watch? again here and wrote overly complicated
procedures to check if rate1 or rate2 can be watched.

Problem 3. Lights out (A: 3, B: 5, C: 4, D: 4, E: 6 points)
This question concerns a simplified version of the game “lights out”. In this game, the goal is to get a
3x3 matrix of lighted buttons to be all off (unlit). Pressing a
button will change the state (i.e., whether the light is on or not) of
some other buttons around it. The picture to the right shows the
labels of the buttons, 1 to 9 starting in the upper left corner.

The state of the board—which lights are on and which are off—is
represented by a sentence of 9 words. The first word in the
sentence corresponds to the button 1 (and so on down the
sentence).

If the word is lit or the number 1, this implies that the corresponding button is lit; any other word
indicates that the corresponding button is unlit. For instance, the sentence
 (lit 0 1 unlit unlit false 1 your-mama 1)
represents a board with only the corners lit.

 1 2 3

 4 5 6

 7 8 9

Part A. The predicates lit? and unlit? take one of the button states (as a word), and return #t or
#f if that button is lit or unlit, respectively.

Write procedure definitions for lit? and unlit?.

(define (lit? wd) (member wd '(lit 1)))
(define (unlit? wd) (not lit))

Part B. Pressing button 4, in this version of the game, will toggle the state of buttons 1 and 7. (This
may be different than other versions of the game). Write the procedure press4, which takes a board
state and returns the state of the board after button 4 is pressed.

Use helper procedures where appropriate. Do not use the procedure item .

(define (toggle wd) (if (lit? wd) 0 1))

(define (press4 state)
 (se (toggle (first state))
 (bf (bl (bl (bl state))))
 (toggle (last (bl (bl state))))
 (last (bl state))
 (last state)))

Many students also toggled the state of button 4 even though the problem specifically said it only
toggles states 1 and 7.

If you tried to do this the non-recursive way, if you tried to use a cond, you had to make sure that
you had to set both button 1 and 7 in the same conditional lines. If you checked for just lit1? or lit7?
and it happened to be true, you would stop the cond statement right there and not go through the rest
of the cond.

If you tried to do this recursively, you may have ended up toggling the entire board if you didn’t
keep track of what button you were currently looking at in your recursive call.

Part C

The procedure win? takes a board state and returns #t if all of the lights are unlit. This is the winning
position.

Write win? without using or, and, appearances, or member?. Assume you have properly working
versions of lit? and unlit?.

(define (win? state)
 (cond ((empty? state) #t)

((lit? (first state))
 (win? (bf state)))
(else #f)))

Part D Write win? without using if, cond, appearances, or member?. Assume you have properly
working versions of lit? and unlit?.

(define (win? state)
 (or (empty? state)
 (and (lit? (first state))

 (win? (bf state)))))

One common error for both problems was that students checked if the entire board was lit (as
opposed to unlit, as the problem states). No points were taken off for non-recursive solutions, but
you should have been able to write recursive solutions for both problems.

Part E. Consider the procedure number-lit?, which takes a number and a board state (as defined
earlier) and returns #t if the number of lights lit on the board is equal to the number given.

 (number-lit? 3 '(1 0 0 lit 0 0 1 0 0))  #t
 (number-lit? 3 '(1 0 0 lit 0 0 0 0 0))  #f
 (number-lit? 3 '(1 0 0 lit 0 0 1 1 0))  #f

The following is a buggy version of number-lit?.

(define (number-lit? n state)
 (cond ((empty? state)
 (<= n 0))

 ((lit? (first state))
 (number-lit? n (bf state)))

 ((unlit? (first state))
 (number-lit? (- n 1) (bf state)))))

Briefly describe the situations in which this version of number-lit? does not return the proper value
or causes an error:

 Write a single (or so) sentence in English to describe the incorrect value(s) or error(s). You can
mark the above code if you want.

 Give examples of parameters (i.e., n and state) which will cause the problem to occur.
 Describe how to fix the incorrect value(s) or error(s), with code or in text.

Two errors could be found for this problem:

Incorrect base case: By checking for (<= n 0), if too many lights are lit (more than the n
argument) you will still return #t. number-lit? should only return #t when the number of lights
lit on the board is exactly equal to n.

- For example, (number-lit? 3 ‘(1 1 1 1 1 1 1 1 1)) would return #t (assuming
we fixed the error below)

- How to fix: Turn (<= n 0) to (= n 0)

Incorrect recursive update: Notice that we subtract 1 from n when we find an unlit? state. This
will find the number of unlit squares, rather than lit squares.

- For example, (number-lit? 3 ‘(1 1 0 1 1 0 1 1 0)) returns #t
- How to fix: Switch the number-lit? recursive calls of the lit? and unlit? conditionals,

so that we subtract 1 from n when we find a lit? state.

Problem 4. You'll be counting the days... (A: 8, B: 4 points)
Your well-meaning colleague decides to rewrite the recursive solution to day-span, but has run into
trouble. He reasons that it should be easy to write a solution that counts the number of days one at a
time. He calls this procedure day-by-day, to distinguish it from day-span; it should function
identically, however. He needs help.

Part A. Fill in the blanks on his code below, using all of the framework code provided below (don't
simply cross some out and ignore it). Be sure to use helper procedures where appropriate, and good
procedure and parameter names. cond statements with 12+ cases will be frowned upon. Feel free to
use any procedure defined in the recursive version of day-span (appendix C in the reader, also
included at the end of this exam).

;; works as day-span
(define (day-by-day date1 date2)
 (if (equal? date1 date2)

 1

 (+ 1 (day-by-day (next-day date1) date2)))))

(define (next-day date)
 (if (last-day-of-month? date)

 (se (next-month date) 1)

 (se (month-name date) (+ (date-in-month date) 1))))

(define (last-day-of-month? date)
 ;;finish this procedure...
 (cond
 ((equal? (month-name date) 'february)
 (equal? (date-in-month date) 28))
 ((member? (month-name date) '(january march may july
 august october december))

 (equal? (date-in-month date) 31))
 (else

 (equal? (date-in-month date) 30))))

Part B. Provide test-cases for next-day. The tests should include only calls to next-day, but should
test the helper procedures that it uses. Be sure to include both the test call and the expected return
value. Additionally, give a very brief explanation on what the test case is testing.

When testing a particular “issue” that can appear in each of the twelve months, refrain from including
all twelve tests. Rather, consider how the months may form similar groups, with respect to the issue at
hand, and provide a single test (or two) for each group. Don't forget to include a brief explanation of
the nature of the group.

We were looking for 4 different tests, here:
 Testing the middle of the month: (next-day '(january 12)) ;; (january 13)
 Testing February 28th : (next-day '(february 28)) ;; (march 1)
 The last day of a 31-day month: (next-day '(january 31)) ;; (february 1)
 The last day of a 30-day month: (next-day '(april 30)) ;; (may 1)

Problem 5. Any letters for me? (A: 7 points)

Consider the procedure get-2ltr-words which takes a word as input, and returns a sentence of
every common two-letter English word whose letters appear consecutively inside the argument.

(get-2ltr-words 'sentence)  ()
(get-2ltr-words 'tommy)  (to my)

(get-2ltr-words 'isolate)  (is so at)

Write get-2ltr-words. Use helper functions where it will make your code more readable.

Assume you have a working version of 2ltr-word?, which takes in a word and returns #t if and only
if it is a two-letter English word. You do not need to write 2ltr-word?.

(define (get-2ltr-words wd)
 (cond
 ((empty? wd) '())
 ((empty? (bf wd)) '())
 ((2-ltr-word? (word (first wd) (first (bf wd))))

 (se (word (first wd) (first (bf wd)))
 (get-2ltr-words (bf wd))))

 (else
 (get-2ltr-words (bf wd)))))

